Bristol scientists turn beer into fuel

December 06, 2017

Chemists at the University of Bristol have made the first steps towards making sustainable petrol using beer as a key ingredient.

It is commonly accepted that there is an urgent need for sustainable alternatives to fossil fuels for transportation to replace diesel and petrol.

One of the most widely used sustainable alternatives to petrol world-wide is bioethanol - in the United States gasoline is typically sold as a blend with up to 10 percent ethanol.

It is also know that ethanol is not an ideal replacement for petrol as it has issues such as lower energy density, it mixes too easily with water and can be fairly corrosive to engines.

A much better fuel alternative is butanol but this is difficult to make from sustainable sources.

Scientists from the University of Bristol's School of Chemistry have been working for several years to develop technology that will convert widely-available ethanol into butanol.

This has already been demonstrated in laboratory conditions with pure, dry ethanol but, if this technology is to be scaled up, it needs to work with real ethanol fermentation broths.

These contain a lot of water (about 90 percent) and other impurities, so the new technology has to be developed to tolerate that.

Professor Duncan Wass, whose team led the research, said: "The alcohol in alcoholic drinks is actually ethanol - exactly the same molecule that we want to convert into butanol as a petrol replacement.

"So alcoholic drinks are an ideal model for industrial ethanol fermentation broths - ethanol for fuel is essentially made using a brewing process.

"If our technology works with alcoholic drinks (especially beer which is the best model) then it shows it has the potential to be scaled up to make butanol as a petrol replacement on an industrial scale."

The technology used to convert ethanol into butanol is called a catalyst - these are chemicals which can speed up and control a chemical reaction and are already widely used in the petrochemical industry.

The Bristol team's key finding is that their catalysts will convert beer (or specifically, the ethanol in beer) into butanol.

In demonstrating that catalysts work with a 'real' ethanol mixture, the team have demonstrated a key step in scaling this technology up to industrial application.

Professor Wass added: "We wouldn't actually want to use beer on an industrial scale and compete with potential food crops.

"But there are ways to obtain ethanol for fuel from fermentation that produce something that chemically is very much like beer - so beer is an excellent readily available model to test our technology."

Another advantage of this approach is that it is quite similar to many existing petrochemical processes.

The next step in terms of application is to build this larger scale process and, based on previous processes, this could take as long as five years even if everything went well. From a scientific point of view, the team are now trying to understand what makes their catalysts so successful.

Professor Wass said: "Turning beer into petrol was a bit of fun, and something to do with the leftovers of the lab Christmas party, but it has a serious point.

"Beer is actually an excellent model for the mixture of chemicals we would need to use in a real industrial process, so it shows this technology is one step closer to reality."
-end-


University of Bristol

Related Ethanol Articles from Brightsurf:

Spraying ethanol to nanofiber masks makes them reusable
A joint research team from POSTECH and Japan's Shinshu University evaluates the filtration efficiency of nanofiber and melt-blown filters when cleaned with ethanol.

Anaerobically disinfect soil to increase phosphorus using diluted ethanol
Anaerobic disinfection of soil is an effective method to kill unwanted bacteria, parasites and weeds without using chemical pesticides.

Fractionation processes can improve profitability of ethanol production
The US is the world's largest producer of bioethanol as renewable liquid fuel, with more than 200 commercial plants processing over 16 billion gallons per year.

Ethanol fuels large-scale expansion of Brazil's farming land
A University of Queensland-led study has revealed that future demand for ethanol biofuel could potentially expand sugarcane farming land in Brazil by 5 million hectares by 2030.

Measuring ethanol's deadly twin
ETH Zurich researchers have developed an inexpensive, handheld measuring device that can distinguish between methanol and potable alcohol.

Modified enzyme can increase second-generation ethanol production
Using a protein produced by a fungus that lives in the Amazon, Brazilian researchers developed a molecule capable of increasing glucose release from biomass for fermentation.

Scientists develop a chemocatalytic approach for one-pot reaction of cellulosic ethanol
Scientists at the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences have developed a chemocatalytic approach to convert cellulose into ethanol in a one-pot process by using a multifunctional Mo/Pt/WOx catalyst.

New core-shell catalyst for ethanol fuel cells
Scientists at Brookhaven Lab and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources.

Yeast makes ethanol to prevent metabolic overload
Why do some yeast cells produce ethanol? Scientists have wondered about this apparent waste of resources for decades.

Corncob ethanol may help cut China's greenhouse gas emissions
A new Biofuels, Bioproducts and Biorefining study has found that using ethanol from corncobs for energy production may help reduce greenhouse gas emissions in China, if used instead of starch-based ethanol.

Read More: Ethanol News and Ethanol Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.