Nav: Home

Birth of a storm in the Arabian Sea validates climate model

December 06, 2017

Researchers from Princeton University and the National Oceanic and Atmospheric Administration (NOAA) report in the journal Nature Climate Change that extreme cyclones that formed in the Arabian Sea for the first time in 2014 are the result of global warming and will likely increase in frequency. Their model showed that the burning of fossil fuels since 1860 would lead to an increase in the destructive storms in the Arabian Sea by 2015, marking one of the first times that modeled projections have synchronized with real observations of storm activity, the researchers said.

In October 2014, Cyclone Nilofar formed off the western coast of India. The unusual system was the first extremely severe cyclonic storm (ESCS) -- defined by wind speeds greater than 102 miles per hour -- on record to appear in the Arabian Sea after South Asia's monsoon season. Cyclones commonly develop in the Arabian Sea after the monsoon season, but none as ferocious as Nilofar, which produced winds of up 130 miles per hour and led to the evacuation of 30,000 people in India.

Then, in 2015, two even stronger extreme cyclones rolled in off the Arabian Sea -- in one week. From Oct. 28 to Nov. 4, Cyclone Chapala -- the second strongest cyclone ever recorded on the Arabian Sea -- brought winds of up to 150 miles per hour and dumped the equivalent of several years' worth of rain on the arid nations of Yemen, Oman and Somalia. Cyclone Megh unleased a second wave of destruction only a few days later. The storms killed 27 people and devastated the already fragile economies and infrastructures of the affected nations. The Yemeni island of Socotra was destroyed by flooding and wind damage.

The researchers analyzed simulations of global and regional cyclone cycles shortly after the 2015 storms to help determine their cause.

Especially notable is that their model projected an increase in post-monsoon extreme cyclones in the Arabian Sea by 2015 that was similar to what actually happened, said first author Hiro Murakami, an associate research scholar in Princeton's Program in Atmospheric and Oceanic Sciences. It is difficult for a climate model to accurately project for a defined location at a certain time.

"This may be the first time that we see synchronicity between a modeled projection and real observations of storm activity in a specific region during a specific season," Murakami said. He worked with Gabriel Vecchi, Princeton professor of geosciences and the Princeton Environmental Institute, and Seth Underwood at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) located on Princeton's Forrestal Campus.

"It is still challenging to predict the year in which an ESCS will occur in the future," Murakami said. "What we emphasize is that the probability of occurrence is increasing relative to that in preindustrial conditions. It would not be surprising if we see a new ESCS generated in late season in the next few years."

This year, Cyclone Ockhi, which formed Nov. 29 and dissipated Dec. 6, left at least 39 dead in Sri Lanka and India. Belonging to the lower classification of a very severe cyclonic storm, Ockhi was nonetheless the most intense Arabian Sea cyclone since Megh with wind speeds peaking at 115 miles per hour.

These powerful new storms strike areas of the world made vulnerable by poverty, conflict and a lack of experience with a cyclone's heavy wind and rain, Murakami said.

"Large economic losses would be expected in Africa, the Middle East and South Asia along the Arabian Sea," he said. "These countries are highly sensitive to storm hazards and impacts due to a lack of adaption strategies. These regions experience comparatively low climatological storm exposure."

The driving force behind the appearance of the ESCSs was higher-than-normal temperatures. Murakami, Vecchi and Underwood used a high-resolution model at GFDL known as HiFLOR to simulate cyclone activity in the Arabian Sea under two scenarios. The first was natural variability such as some years being hotter than others. HiFLOR is able to reproduce observed variations in the frequency of category 4 and 5 hurricanes in the North Indian Ocean, then project that fluctuation onto other regions and storm systems. This results in a realistic simulation of natural variability.

The second simulation factored in increased atmospheric concentrations of sulfate, organic carbon, black carbon and other compounds that result from human activities. Black carbon and sulfates especially result from burning fossil fuels and biomass such as wood, a popular fuel in South Asia. The researchers ran their simulations with the levels of these substances as they were in the years 1860, 1940, 1990 and 2015.

They found significant increases in the occurrence of post-monsoon ESCSs in the Arabian Sea in 1990 and 2015 -- the latter of which matched the recent storms. (Real observations of extreme cyclone activity in the Arabian Sea are limited because there was no full weather-satellite coverage in this area before 1998.) New models are being developed to more accurately account for the influence of human-made aerosols on the creation of extreme cyclones over the Arabian Sea, Murakami said.
-end-
The paper, "Increasing frequency of extremely severe cyclonic storms over the Arabian Sea," was published in the December 2017 print edition by Nature Climate Change. This work was funded by the National Oceanic and Atmospheric Administration (award no. NA14OAR4830101).

Princeton University

Related Black Carbon Articles:

Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.
How much does black carbon contribute to climate warming?
Black carbon particles -- more commonly known as soot -- absorb heat in the atmosphere.
Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.
Police killings of unarmed black Americans may have health impacts for nearby unborn black infants
Pregnant black women give birth to infants with smaller birth weights and shorter gestational ages if they live near the site of incidents in which unarmed blacks are killed by police during their first or second trimester, according to a new study.
Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
Black carbon found in the Amazon River reveals recent forest burnings
International study quantified and characterized charcoal and soot produced by incomplete burning of trees and transported by river to the Atlantic.
Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?
Taxi drivers face highest levels of black carbon compared to other professional drivers
Professional drivers working in congested cities are exposed to black carbon levels that are on average a third higher than would be experienced at a busy roadside, according to research presented at the European Respiratory Society International Congress.
First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.
New route to carbon-neutral fuels from carbon dioxide discovered by Stanford-DTU team
A new way to convert carbon dioxide into the building block for sustainable liquid fuels was very efficient in tests and did not have the reaction that destroys the conventional device.
More Black Carbon News and Black Carbon Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.