Nav: Home

A new gene therapy transplantation technique could improve treatment of neurodegenerative diseases

December 06, 2017

Immune cells defending the central nervous system (the so-called microglia) have a key role in many neurodegenerative diseases. A study published today in Science Advances shows for the first time the efficacy of a new gene therapy transplantation technique which aims at repopulating the brain with new, genetically engineered immune cells. Such cells are generated by progenitors which are injected directly into brain ventricles - that makes their therapeutic action quicker. The research was performed at San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) with the collaboration of the Dana-Farber/Boston Children's Cancer and Blood Disorders Center. The scientists have been guided by Alessandra Biffi, supervisor of a research unit at SR-Tiget and director of the Gene therapy program at Dana-Farber/Boston Children's. The technique has been tested on an experimental model for a metabolic disease and might have future therapeutic applications for other neurodegenerative diseases in which microglia cells play a role. The study was supported also by the European Commission through an ERC grant won by Alessandra Biffi.

This study has its roots in Alessandra Biffi's long-standing interest in lysosomial storage diseases (LSDs), a heterogeneous group of hereditary metabolic diseases caused by a genetic mutation preventing cells from producing enzymes which are fundamental for their metabolism. Patients with LSDs have severe damages to different organs and tissues, including the central nervous system. The standard therapeutic approach - which is often the only one at hand - consists in the injection in the blood stream of the missing enzyme. That, though, is ineffective in case the patient has already shown neurological problems - in fact, the blood-brain barrier prevents the enzyme from reaching the brain, where neurodegeneration continues. That is why a few years ago Alessandra Biffi, working together with Luigi Naldini (director of SR-Tiget), tried cell and gene therapies approaches. In an ongoing clinical trial performed at SR-Tiget to treat metachromatic leukodystrophy (a neurodegenerative LSD), blood stem cells are extracted from the patients' bone marrow, genetically engineered so as they regain the ability to produce the missing enzyme, and then injected back into the bloodstream. Being able to cross the blood-brain barrier, the cells reach the brain and begin their therapeutic action.

Timing, though, is a key element. Gene therapies administered through the blood are effective only if they act in advance. Cells, in fact, need time to reach the brain and engraft into the nervous tissue. That is why at the moment only patients who are still asymptomatic can be treated.

The new technique designed by Alessandra Biffi's team and discussed on today's issue of Science Advances could change everything. "Transplanting stem cells into brain ventricles quickens the engraftment process and in the future could be a viable therapeutic option for patients showing the first symptoms, too" says Alessandra Biffi. But the research results extend beyond the timing question. "Our data shows for the first time that transplanted blood stem cells, once they reach the brain, are able to differentiate into microglia-like cells. These cells remain exclusively in the central nervous system". This means that with such technique we can quickly generate a population of genetically engineered cells exclusively in the ill nervous system. From their position, these cells can release therapeutic molecules, helping the tissue to heal and regenerate, and might have potential application in a variety of neurodegenerative diseases.
The study was supported by Fondazione Telethon and the European Commission - ERC Consolidator Grant "HSCSFORLSDBRAIN".

Dana-Farber/Boston Children's Cancer and Blood Disorders Center brings together two internationally known research and teaching institutions that have provided comprehensive care for pediatric oncology and hematology patients since 1947. The Harvard Medical School affiliates share a clinical staff that delivers inpatient care and surgery at Boston Children's Hospital, outpatient oncology care at Dana-Farber Cancer Institute and outpatient blood disorders care at Boston Children's.

Boston Children's Hospital

Related Gene Therapy Articles:

Mysterious gene transcripts after cancer therapy
Drugs that are used in cancer therapy to erase epigenetic alterations in cancer cells simultaneously promote the production of countless mysterious gene transcripts, scientists from the German Cancer Research Center now report in Nature Genetics.
Gene therapy could 'turn off' severe allergies
A single treatment giving life-long protection from severe allergies such as asthma could be made possible by immunology research at The University of Queensland.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
New gene therapy for pseudarthrosis trialed at Kazan University
A team headed by Professor Albert Rizvanov, director of the Gene and Cell Technologies Open Lab, created a gene therapy drug that encodes growth factors for the stimulation of blood vessel and bone formation.
WSU researcher develops safer gene therapy
A Washington State University researcher has developed a way to reduce the development of cancer cells that are an infrequent but dangerous byproduct of gene therapy.
New gene therapy prevents muscle wasting associated with cancer
A new gene therapy could be used to prevent the loss of muscle mass and physical strength associated with advanced cancer
On the path to controlled gene therapy
The ability to switch disease-causing genes on and off remains a dream for many physicians, research scientists and patients.
Gene therapy against brain cancer
A team from the International School for Advanced Studies (SISSA) in Trieste has obtained very promising results by applying gene therapy to glioblastoma.
First gene therapy successful against human aging
Elizabeth Parrish, CEO of Bioviva USA Inc. has become the first human being to be successfully rejuvenated by gene therapy, after her own company's experimental therapies reversed 20 years of normal telomere shortening.
Designing gene therapy
Scientists in the Barabas group at EMBL have increased the efficiency of a genome-engineering tool called Sleeping Beauty, which is showing promise in clinical trials for leukemia and lymphoma immunotherapies.

Related Gene Therapy Reading:

The Forever Fix: Gene Therapy and the Boy Who Saved It
by Ricki Lewis (Author)

Fascinating narrative science that explores the next frontier in medicine and genetics through the very personal prism of the children and families gene therapy has touched.

Eight-year-old Corey Haas was nearly blind from a hereditary disorder when his sight was restored through a delicate procedure that made medical history. Like something from a science fiction novel, doctors carefully introduced viruses bearing healing genes into Corey's eyes―a few days later, Corey could see, his sight restored by gene therapy.
THE FOREVER FIX is the first book to tell the fascinating story... View Details

The Gene: An Intimate History
by Siddhartha Mukherjee (Author)

A New York Times Notable Book
A Washington Post and Seattle Times Best Book of the Year

From the Pulitzer Prize-winning author of The Emperor of All Maladies—a fascinating history of the gene and “a magisterial account of how human minds have laboriously, ingeniously picked apart what makes us tick” (Elle).

“Dr. Siddhartha Mukherjee dazzled readers with his Pulitzer Prize-winning The Emperor of All Maladies in 2010. That achievement was evidently just a warm-up for... View Details

The Gene Therapy Plan: Taking Control of Your Genetic Destiny with Diet and Lifestyle
by Mitchell L. Gaynor MD (Author), Mehmet C. Oz M.D. (Foreword)

From a renowned oncologist and pioneer in integrative medicine, a revolutionary approach to healing at the genetic level: preventing cancer, heart disease, and diabetes; increasing brain function; and reversing habits that lead to obesity and premature aging
“This book is about harnessing the power hidden in foods to change our genetic predisposition for disease.”
—From the foreword by Dr. Mehmet Oz
“If you want to learn how to use food and nutrients to prevent and even reverse most chronic disease, read this book!”
—Mark... View Details

Gene and Cell Therapy: Therapeutic Mechanisms and Strategies, Fourth Edition
by Nancy Smyth Templeton (Editor)

The Most Comprehensive, State-of-the-Art Book on Using Gene and Cell Therapy in Clinical Medicine

Gene and Cell Therapy: Therapeutic Mechanisms and Strategies, Fourth Edition presents extensive background and basic information, state-of-the-art technologies, important achievements, and lingering challenges in the fields of gene and cell therapies. The fourth edition of this bestseller continues to provide the most comprehensive coverage of these fields in one volume. Some chapters have expanded introductions, making the book even more suitable for classroom... View Details

Adenoviral Vectors for Gene Therapy, Second Edition
by David T. Curiel (Editor)

Adenoviral Vectors for Gene Therapy, Second Edition provides detailed, comprehensive coverage of the gene delivery vehicles that are based on the adenovirus that is emerging as an important tool in gene therapy. These exciting new therapeutic agents have great potential for the treatment of disease, making gene therapy a fast-growing field for research.

This book presents topics ranging from the basic biology of adenoviruses, through the construction and purification of adenoviral vectors, cutting-edge vectorology, and the use of adenoviral vectors in preclinical animal... View Details

Advanced Textbook on Gene Transfer, Gene Therapy and Genetic Pharmacology: Principles, Delivery and Pharmacological and Biomedical Applications of ... (Icp Textbooks in Biomolecular Sciences)
by Daniel Scherman (Author), Daniel Scherman (Editor)

This unique advanced textbook provides a clear and comprehensive description of the field of gene delivery, gene therapy and genetic pharmacology, with descriptions of the main gene transfer vectors and a set of selected therapeutic applications, along with safety considerations.

The use of gene transfer is exponential in the scientific and medical community, both for cell biology experiments and for gene therapy revolutionary strategies. The advanced textbook should thus be of invaluable utility to Master, PhD or MD students, post-doctoral scientists or medical doctors, and to any... View Details

Gene Therapy: Treating Disease by Repairing Genes (New Biology)
by Joseph, Ph.D. Panno (Author)

Discusses how gene therapy works, what diseases may be treated by it, what the moral and ethical issues are, and provides case studies of Ashi DeSilva and Jesse Gelsinger. View Details

Gene therapy
by The Open University

This 4-hour free course looked at gene correction and the use of genes to treat disorders. Somatic and germline gene therapy were also discussed. View Details

A Crack in Creation: Gene Editing and the Unthinkable Power to Control Evolution
by Jennifer A. Doudna (Author), Samuel H. Sternberg (Author)

A trailblazing biologist grapples with her role in the biggest scientific discovery of our era: a cheap, easy way of rewriting genetic code, with nearly limitless promise and peril.

Not since the atomic bomb has a technology so alarmed its inventors that they warned the world about its use. Not, that is, until the spring of 2015, when biologist Jennifer Doudna called for a worldwide moratorium on the use of the new gene-editing tool CRISPR—a revolutionary new technology that she helped create—to make heritable changes in human embryos. The cheapest,... View Details

Gene Therapy
by Mauro Giacca (Author)

I entered the gene therapy field in the mid-1990s, being fascinated by the immense potential of genes as drugs for the treatment of human disease. Since then, I have experienced the ups and downs of this discipline, and tried to contribute with my work and that of my laboratory to the development of innovative approaches to the treatment of cardiovascular disorders. During these years, I have had several opp- tunities to speak on gene therapy at lectures and academic lessons, and have often noticed that the field is very attractive to scientists of all disciplines. However, as yet no... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Consequences Of Racism
What does it mean to be judged before you walk through the door? What are the consequences? This week, TED speakers delve into the ways racism impacts our lives, from education, to health, to safety. Guests include poet and writer Clint Smith, writer and activist Miriam Zoila Pérez, educator Dena Simmons, and former prosecutor Adam Foss.
Now Playing: Science for the People

#465 How The Nose Knows
We've all got a nose but how does it work? Why do we like some smells and not others, and why can we all agree that some smells are good and some smells are bad, while others are dependant on personal or cultural preferences? We speak with Asifa Majid, Professor of Language, Communication and Cultural Cognition at Radboud University, about the intersection of culture, language, and smell. And we level up on our olfactory neuroscience with University of Pennsylvania Professor Jay Gottfried.