Nav: Home

3-D mini brains accelerate research for repairing brain function

December 06, 2017

HOUSTON-(Dec. 6, 2017) - The Houston Methodist Research Institute is making mini brains from human stem cells that put researchers on a fast track to repair the nervous system after injury or disease of the brain and spinal cord.

Houston Methodist neuroscientist Robert Krencik, Ph.D., and his team have developed a new system to reduce the time it takes to grow these brain models, which will give them the ability to screen drugs and study what's behind disease-causing mutations more quickly. Their findings are described in an article titled "Systematic three-dimensional coculture rapidly recapitulates interactions between human neurons and astrocytes," in the Dec. 12 issue of Stem Cell Reports.

"We always felt like what we were doing in the lab was not precisely modeling how the cells act within the human brain," Krencik said. "So, for the first time, when we put these cells together systematically, they dramatically changed their morphological complexity, size and shape. They look like cells as you would see them within the human brain, so now we can study cells in the lab in a more natural environment."

And why is this important? Krencik says cells grown in traditional lab cultures are put on a flat petri dish, broken up and otherwise manipulated, disturbing their interactions. This results in not being able to reproduce the form, structure and developmental growth of the brain's cells in the lab, leading to very simplistic-looking and immature cells. In the human brain, however, these cells are very complex-looking and interact in intricate ways with each other and the environment. New technologies are now focused on 3-D culture systems, but the exhaustive time for these studies is not feasible for accelerating discoveries.

"Normally, growing these 3-D mini brains takes months and years to develop," Krencik said. "We have new techniques to pre-mature the cells separately and then combine them, and we found that within a few weeks they're able to form mature interactions with each other. So, the length of time to get to that endpoint for studies is dramatically reduced with our system."

Krencik's lab focused on a star-shaped cell type called astrocytes, because they are a key factor in getting the brain's neurons to connect and talk to each other by helping to increase the number and strength of neuronal connections in the brain and spinal cord. They are involved in most neural diseases and also are responsible for maintaining a healthy nervous system. With the model Krencik's team bioengineered, the incorporation of astrocytes accelerated the connections of the surrounding neurons.

Krencik's group is the first to specifically engineer astrocytes into these 3-D mini brains. By doing so, this led to the accelerated maturation of both the astrocytes and the surrounding neurons. Introducing them for the first time in this paper, he coined these bioengineered mini brains "asteroids" to distinguish them from other types of 3-D sphere cultures, known as organoids. Krencik's "asteroids" contain specific populations of astrocytes, whereas organoids have undefined numbers and types of cells.

"Using our system, we can generate mature astrocytes and have them interact intimately with neurons to a greater extent than has been done before," Krencik said. "Unlike other cells in the brain and in the rest of the body, astrocytes have unique properties in humans. It's thought they are partly responsible for the unique cognitive functions of humans and also may underlie aspects of human diseases, such as Alzheimer's and autism spectrum disorders."

Ultimately, Krencik is using these "asteroids" to form functional neural circuits that researchers can experimentally manipulate for developing treatments and deciphering what makes diseases tick. Krencik says they can make induced pluripotent stem cells, commonly termed iPS cells, from any disease or patient and then form these mini brains to study the disease process, as well as screen therapeutic compounds on them to aid in the development of drugs. Within about five years, his goal is to use this system to develop clinical trials to improve or regenerate a person's impaired nervous system.
-end-
Researchers collaborating with Krencik on this paper include Philip J. Horner, Nupur Basu, Caroline Cvetkovic and Saba Barlas with Houston Methodist Research Institute; Michael E. Ward with the NIH's National Institute of Neurological Disorders and Stroke; and Li Gan, David H. Rowitch, Erik M. Ullian, Robert Chen, Connor Ludwig, Chao Wang, Kyounghee Seo and Jessy V. van Asperen with the University of California, San Francisco.

The work was supported by a Paul G. Allen Family Foundation Award, SFARI Award (345471), an NIH National Institute of Mental Health grant (R01MH099595-01), a gift from the That Man May See foundation, an NIH National Eye Institute Core Grant for Vision Research (EY002162), and a Research to Prevent Blindness Unrestricted Grant.

To speak with Robert Krencik, Ph.D., contact Lisa Merkl, Houston Methodist, at 281-620-2502 or lmerkl@houstonmethodist.org. For more information about Houston Methodist, visit houstonmethodist.org. Follow us on Twitter and Facebook.

For more information: Systematic three-dimensional coculture rapidly recapitulates interactions between human neurons and astrocytes. Stem Cell Reports DOI: 10.1016/j.stemcr.2017.10.026 (Dec. 12, 2017) R. Krencik, K. Seo, J.V. van Asperen, N. Basu, C. Cvetkovic, S. Barlas, R. Chen, C. Ludwig, C. Wang, M.E. Ward, L. Gan, P.J. Horner, D.H. Rowitch, and E.M. Ullian.

Houston Methodist

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

From Neuron to Brain (5th Ed)
by John G. Nicholls (Author), A. Robert Martin (Author), David A. Brown (Author), Mathew E. Diamond (Author), David A. Weisblat (Author), Paul A. Fuchs (Author)

The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition
by W. W. Norton & Company

From Photon to Neuron: Light, Imaging, Vision
by Philip Nelson (Author)

From Neuron to Brain: A Cellular and Molecular Approach to the Function of the Nervous System, Fourth Edition
by John G. Nicholls (Author), A. Robert Martin (Author), Bruce G. Wallace (Author), Paul A. Fuchs (Author)

Neurons In Action 2: Tutorials and Simulations using NEURON
by John W. Moore (Author), Anne E. Stuart (Author)

From Neurons to Neighborhoods : The Science of Early Childhood Development
by Committee on Integrating the Science of Early Childhood Development (Author), Youth, and Families Board on Children (Author), National Research Council (Author), Committee on Integrating the Science of Early Childhood Development (Author), Jack P. Shonkoff (Editor), Deborah A. Phillips (Editor)

Neurons Notebook
by Wild Pages Press (Author)

Neurons & Neurotransmitters Wall Chart: 8271 (Physiology)
by Scientific Publishing (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#491 Frankenstein LIVES
Two hundred years ago, Mary Shelley gave us a legendary monster, shaping science fiction for good. Thanks to her, the name of Frankenstein is now famous world-wide. But who was the real monster here? The creation? Or the scientist that put him together? Tune in to a live show from Dragon Con 2018 in Atlanta, as we breakdown the science of Frankenstein, complete with grave robbing and rivers of maggots. Featuring Tina Saey, Lucas Hernandez, Travor Valle, and Nancy Miorelli. Moderated by our own Bethany Brookshire. Related links: Scientists successfully transplant lab-grown lungs into pigs, by Maria Temming on Science...