Nav: Home

Protecting cell powerhouse paves way to better treatment of acute kidney injury

December 06, 2018

AUGUSTA, Ga. (Dec. 6, 2018) - For the first time, scientists have described the body's natural mechanism for temporarily protecting the powerhouses of kidney cells when injury or disease means they aren't getting enough blood or oxygen.

Powerhouses, called mitochondria, which provide fuel for our cells, start to fragment, likely as one of the first steps in the kidney cell damage and death that often result from an acute kidney injury, says Dr. Zheng Dong, cellular biologist in the Department of Cellular Biology and Anatomy at the Medical College of Georgia at Augusta University.

Dong and his colleagues appear to have delineated the natural mitochondrial protection pathway in kidney cells and say it's a logical therapeutic target for treating acute kidney injury.

"We know there is a natural protective mechanism. Maybe we need to upregulate it," says Dong, also a senior research career scientist and director of research development at the Charlie Norwood Veterans Affairs Medical Center in Augusta. Dong is senior author of the study published in the Journal of Clinical Investigation.

In fact, drugs that target at least one key part of the pathway already have been studied in patients experiencing anemia - a deficiency in the red blood cells that carry oxygen - because of chronic kidney disease.

The scientists started by examining a large number of microRNAs, small RNAs known to regulate gene expression. They found one, microRNA-668, consistently elevated in both patients with an acute kidney injury as well as animal models of the condition, which is common in patients in intensive care, particularly older patients.

Mitochondrial fission and fusion are polar opposites but their balance is key to a healthy cell powerhouse. They are governed by two distinct classes of proteins, which emerging evidence suggests are regulated by microRNAs.

Proteins like mitochondrial Protein 18 KDa, or MTP18, for example, have already been implicated in powerhouse fission, at least in periods of stress. The MCG scientists and their collaborators have now confirmed it's a direct target of microRNA-668.

But the pathway has at least one earlier point of action: hypoxia-inducible factor-1, or HIF-1, a transcription factor that increases when oxygen levels decrease to help cells adjust by controlling expression of genes that can protect them.

They found that ischemic acute kidney injury induces HIF-1, which upregulates microRNA-668, which suppresses MTP18 and the result is kidney cell protection.

One key discovery was an HIF-1 binding site on the gene that promotes microRNA-668, and the related finding that too little HIF-1 reduced the expression of microRNA-668.

"The microRNA-668 gene is a new targeted gene for HIF-1, which may help explain some of HIF-1's protective function," Dong says.

When scientists restricted microRNA-668, more kidney cells died. Conversely, giving a mimic of microRNA-668 - to increase its presence - protected kidney cells. More microRNA-668 also meant less MTP18 and vice versa.

"We don't know what MTP18 does normally, but now we know what it does when stressed," Dong says. "It induces fragmentation of the mitochondria."

They've shown that increased levels of microRNA-668 can prevent most of that damage so the cell can keep functioning ideally until blood and oxygen are restored. "This is like a temporary mechanism for cell survival," Dong says.

One way physicians might one day improve the odds for mitochondrial and kidney survival, may be a class of drugs called PHD inhibitors, which have already been studied in chronic kidney disease. PHD - prolyl hydroxylase - is a protein that induces the degradation of protective HIF-1 and Dong suspects PHD inhibitors could benefit patients with acute kidney injury as well. A microRNA-668 mimic, similar to that used in the studies, might one day be another option.

Right now there aren't any targeted therapies for acute kidney injury, says Dong, rather supportive therapies like hydration, possible short-term dialysis and addressing the injury cause.

With an acute kidney injury, kidney function deteriorates in a few hours or days. It can result from a literal blow to the kidney, in a fall or car accident, or from dehydration in an overzealous student athlete. In the face of general good health, most patients recover fully and quickly, Dong says.

However, acute kidney injury mostly occurs in people who already have another medical problem like diabetes. In fact, most are in the hospital when it happens, with problems like bleeding or shock, failure of other organs like the heart, even an overdose of over-the-counter nonsteroidal anti-inflammatories for problems like a cold or flu, according to the National Kidney Foundation.

Dong's lab was the first to show that as a class of molecules, microRNAs could play an important role in reducing acute kidney injury. They reported in 2010 that deletion of a key enzyme for microRNA production from kidney tubules made mice resistant to ischemia-induced acute kidney injury, suggesting an important destructive role for at least some microRNAs.

Subsequent work by Dong and colleagues led to identification of specific microRNAs with significant changes in expression in the face of ischemic acute kidney injury. Those studies found some microRNAs definitely promote fission but others seem to help protect kidney cells.

Just what microRNA-668 does has been largely unknown other than another recent report implicating it in protecting human breast cancer cells from radiation therapy.
-end-
Dr. Qingqing Wei, assistant professor in the MCG Department of Cellular Biology and Anatomy, is a co-corresponding author on the study. Dong is also a Regents' Professor and Leon Henri Charbonnier Endowed Chair in Cellular Biology and Anatomy at MCG.

Collaborators and coauthors Drs. Haipeng Sun, Shuwei Song and Changlin Mei in the Department of Nephrology at Changzheng Hospital, Second Military Medical University in Shanghai, China, provided patient samples, including kidney biopsies, urine and blood, and analyzed them for the study.

The research was supported by the American Heart Association, National Natural Science Foundation of China, the National Institutes of Health and the Department of Veterans Affairs.

Click to see the full study https://www.jci.org/articles/view/121859.

Medical College of Georgia at Augusta University

Related Chronic Kidney Disease Articles:

Combating chronic kidney disease with exercise
A University of Delaware research team is combating chronic kidney disease (CKD) with exercise.
'Goldilocks' drug prevents chronic kidney disease in primates
A Massachusetts General Hospital research team has developed a way to avoid ischemia/reperfusion injury of the kidney with a new monoclonal antibody that binds its target receptor in a way that is 'just right.'
Reflux and ulcer medications linked to kidney stones and chronic kidney disease
Individuals who took proton pump inhibitors or histamine receptor-2 blockers for heartburn, acid reflux, or ulcers had elevated risks of developing kidney stones.
Allopurinol does not increase chronic kidney disease risk in gout patients
Allopurinol, a widely used treatment for lowering serum urate levels, does not appear to increase risk of kidney deterioration in gout patients with normal or near-normal kidney function, according to new research findings presented this week at the 2016 ACR/ARHP Annual Meeting in Washington.
Research connects first-time kidney stone formers and chronic kidney disease
Mayo Clinic nephrologists have uncovered a connection between first-time kidney stone formers and chronic kidney disease.
Chronic kidney disease may cause diabetes
A team from the University of Montreal Hospital Research Centre (CRCHUM) has discovered a novel link between chronic kidney disease and diabetes.
Urea impairs insulin-producing cells in chronic kidney disease
In this issue of the JCI, researchers at the University of Montreal demonstrated that high levels of urea may compromise the function of insulin-producing pancreas cells and lead to impaired blood sugar regulation in chronic kidney disease.
Discovery of biomarkers for the prognosis of chronic kidney disease
Currently, there is no effective method to predict the prognosis of chronic kidney disease (CKD) patients.
Certain factors affect vitamin D levels in children with chronic kidney disease
Two-thirds of the children with kidney disease were classified as vitamin D deficient.
Simple public health intervention may prevent chronic kidney disease
Kidney function remained unchanged among hypertensive adults in communities assigned to a public health intervention for general practitioners and community health workers, whereas kidney function significantly declined among those who received usual care.

Related Chronic Kidney Disease Reading:

Handbook of Chronic Kidney Disease Management
by Dr. John T. Daugirdas M.D. (Author)

The Doctor's Kidney Diets: A Nutritional Guide to Managing and Slowing the Progression of Chronic Kidney Disease
by Mandip S. Kang MD (Author)

Renal Diet Cookbook for the Newly Diagnosed: The Complete Guide to Managing Kidney Disease and Avoiding Dialysis
by Susan Zogheib MHS RD LDN (Author), Jay Wish MD (Foreword)

Coping with Kidney Disease: A 12-Step Treatment Program to Help You Avoid Dialysis
by Mackenzie Walser (Author), Betsy Thorpe (Author)

What Is It and How Did I Get It?: Early Stage Chronic Kidney Disease
by Gail Rae (Author)

Management of Chronic Kidney Disease: A Clinician’s Guide
by Mustafa Arici (Editor)

Nephrology Secrets
by Edgar V. Lerma MD FACP FASN FAHA (Author), Matthew A Sparks MD (Author), Joel Topf MD (Author)

Chronic Kidney Disease: A practical guide to understanding and management (Oxford Clinical Nephrology Series)
by Meguid El Nahas (Author), Adeera Levin (Author)

Renal Diet Plan and Cookbook: The Optimal Nutrition Guide to Manage Kidney Disease
by Rockridge Press (Publisher)

Kidney Disease: for beginners - What You Need to Know About Chronic Kidney Disease: Diet, Treatment, Prevention, and Detection (Chronic Kidney Disease - KIdney Stones - Kidney Disease 101 Book 1)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.