Nav: Home

A 3D imaging technique unlocks properties of perovskite crystals

December 06, 2018

A team of materials scientists from Penn State, Cornell and Argonne National Laboratory have, for the first time, visualized the 3D atomic and electron density structure of the most complex perovskite crystal structure system decoded to date.

Perovskites are minerals that are of interest as electrical insulators, semiconductors, metals or superconductors, depending on the arrangement of their atoms and electrons.

Perovskite crystals have an unusual grouping of oxygen atoms that form an octahedron -- an eight-sided polygon. This arrangement of oxygen atoms acts like a cage that can hold a large number of the elemental atoms in the periodic table. Additionally, other atoms can be fixed to the corners of a cube outside of the cage at precise locations to alter the material's properties, for instance in changing a metal into an insulator, or a non-magnet into a ferromagnet.

In their current work, the team grew the very first discovered perovskite crystal, called calcium titanate, on top of a series of other perovskite crystal substrates with similar but slightly different oxygen cages at their surfaces. Because the thin film perovskite on top wants to conform to the structure of the thicker substrate, it contorts its cages in a process known as tilt epitaxy. The researchers found this tilt epitaxy of calcium titanate caused a very ordinary material to become ferroelectric -- a spontaneous polarization -- and to remain ferroelectric up to 900 Kelvin, around three times hotter than room temperature. They were also able to visualize the three-dimensional electron density distribution in calcium titanate thin film for the first time.

"We have been able to see atoms for quite some time, but not map them and their electron distribution in space in a crystal in three dimensions," said Venkat Gopalan, professor of materials science and physics, Penn State. "If we can see not just where atomic nuclei are located in space, but also how their electron clouds are shared, that will tell us basically everything we need to know about the material in order to infer its properties."

That was the challenge the team set for itself over five years ago when Gopalan gave the project to his student and lead author of a new report in Nature Communications, Yakun Yuan,. Based on a rarely used x-ray visualization technique called COBRA, (coherent Bragg rod analysis) originally developed by a group in Israel, Yuan figured out how to expand and modify the technique to analyze one of the most complicated, least symmetrical material systems studied to date. This system is a strained three-dimensional perovskite crystal with octahedral tilts in all directions, grown on another equally complex crystal structure.

"To reveal 3D structural details at the atomic level, we had to collect extensive datasets using the most brilliant synchrotron X-ray source available at Argonne National Labs and carefully analyze them with the COBRA analysis code modified for accommodating the complexity of such low symmetry," said Yuan.

Gopalan went on to explain that very few perovskite oxygen cages are perfectly aligned throughout the material. Some rotate counterclockwise in one layer of atoms and clockwise in the next. Some cages are squeezed out of shape or tilt in directions that are in or out of plane to the substrate surface. From the interface of a film with the substrate it is grown on, all the way to its surface, each atomic layer may have unique changes in their structure and pattern. All of these distortions make a difference in the material properties, which they can predict using a computational technique called density functional theory (DFT).

"The predictions from the DFT calculations provide insights that complement the experimental data and help explain the way that material properties change with the alignment or tilting of the perovskite oxygen cages," said Susan Sinnott, head and professor of Materials Science and Engineering, whose group performed the theoretical calculations.

The team also validated their advanced COBRA technique against multiple images of their material using the powerful Titan transmission electron microscope in the Materials Research Institute at Penn State. Since the electron microscopes image extremely thin electron transparent samples in a 2D projection, not all of the 3D image could be captured even with the best microscope available today and with multiple sample orientations. This is an area where 3D dimensional imaging by the COBRA technique outperformed the electron microscopy in such complex structures.

The researchers believe their COBRA technique is applicable to the study of many other 3D, low-symmetry atomic crystals.
-end-
Additional authors on "Three-dimensional atomic scale electron density reconstruction of octahedral tilt epitaxy in functional perovskites" Yanfu Lu, a Ph.D. student in Sinnott's group, Greg Stone, Gopalan's former postdoctoral scholar, Ke Wang, a staff scientist in Penn State's Materials Research Institute, Darrell Schlom and his Ph.D. student Charles Brooks, Cornell University, and Hua Zhou, staff scientist, Argonne National Laboratory.

The National Science Foundation funded this project with additional support provided through the Department of Energy and the Penn State 2D Crystal Consortium, a NSF Materials Innovation Platform, and the Penn State institute for CyberScience.

Penn State

Related Crystal Structure Articles:

DIY crystal-makers get refurbished online cookbook
In response to popular demand, materials scientists at Duke University have resurrected an online cookbook of crystalline structures that started when the World Wide Web was Netscape Navigator and HTML 1.0.
Dawn of organic single crystal electronics
Researchers at the Institute for Molecular Science, National Institutes of Natural Sciences (Japan) have developed a method for high performance doping of organic single crystal.
Crystallization made crystal clear
Researchers at the Weizmann Institute of Science have, for the first time, directly observed the process of crystallization on the molecular level, validating some recent theories about crystallization, as well as showing that if one knows how the crystal starts growing, one can predict the end structure.
Mapping the effects of crystal defects
MIT research offers insights into how crystal dislocations -- a common type of defect in materials -- can affect electrical and heat transport through crystals, at a microscopic, quantum mechanical level.
Scientists create new form of matter, a time crystal
Scientists are reporting in the journal Nature on the creation of a phase of matter, dubbed a time crystal, in which atoms move in a pattern that repeats in time rather than in space.
Most complex nanoparticle crystal ever made by design
The most complex crystal designed and built from nanoparticles has been reported by researchers at Northwestern University and the University of Michigan.
In-cell molecular sieve from protein crystal
Scientists at Tokyo Institute of Technology, RIKEN, and Kyoto Institute of Technology have applied rational crystal design to create protein crystals with extended porous network to accumulate exogenous molecules inside living cells.
Novel liquid crystal could triple sharpness of today's televisions
An international team of researchers has developed a new blue-phase liquid crystal that could enable televisions, computer screens and other displays that pack more pixels into the same space while also reducing the power needed to run the device.
Researcher's discovery of new crystal structure holds promise for optoelectronic devices
A Florida State University professor has observed a never-been-seen crystal structure that holds promise for optoelectronic devices.
Einstein in an iron crystal
Angle-resolved photoemission spectroscopy has enabled scientists from Forschungszentrum Jülich and LMU Munich to directly visualize the formation of shifts in the band structure (band gaps) of a sample of prototypical magnetic material as a response to the change in direction of a magnetic field.

Related Crystal Structure Reading:

Crystal Structure Determination
by Werner Massa (Author), Robert O. Gould (Translator)

Crystal Structure Determination
by Werner Massa (Author)

Crystal Structure Determination
by Werner Massa (Author), Robert O. Gould (Translator)

Crystal Structure Analysis: Principles and Practice (International Union of Crystallography Texts on Crystallography)
by Alexander J Blake (Author), Jacqueline M Cole (Author), John S O Evans (Author), Peter Main (Author), Simon Parsons (Author), David J Watkin (Author), William Clegg (Editor)

Crystal Structure Analysis: A Primer (International Union of Crystallography Texts on Crystallography)
by Jenny Pickworth Glusker (Author), Kenneth N. Trueblood (Author)

The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Mode
by Linus Pauling (Author)

Crystals and Crystal Structures
by Richard J. D. Tilley (Author)

The Collector's Guide to Silicate Crystal Structures (Schiffer Earth Science Monographys)
by Robert Lauf (Author)

Crystal Structures of Clay Minerals and their X-ray Identification (Monograph / Mineralogical Society)
by G.W. Brindley and G. Brown (Author), G.W. Brindley and G. Brown (Editor)

Crystal Structure Refinement: A Crystallographer's Guide to SHELXL (International Union of Crystallography Texts on Crystallography)
by Peter Müller (Author), Regine Herbst-Irmer (Author), Anthony Spek (Author), Thomas Schneider (Author), Michael Sawaya (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.