Nav: Home

New molecular tool identifies sugar-protein attachments

December 06, 2018

Researchers at Johns Hopkins Medicine have developed a new molecular tool they call EXoO, which decodes where on proteins specific sugars are attached--a possible modification due to disease. The study, published in issue 14 of Molecular Systems Biology, describes the development of the tool and its successful use on human blood, tumors and immune cells.

Half of all proteins made in human cells have sugar molecules attached to them, the most common of which are N-glycans and O-glycans. Until now, O-glycans have been more difficult to study because there were not adequate tools to identify them. And, whereas proteins are coded and made according to the DNA blueprint, whether and how many sugars are attached to proteins can vary, especially in disease conditions.

"The biggest challenge in the field of glycobiology has been to pin down what sugars are conjugated on where and on which proteins, and we've now developed a reliable way to do that," says Weiming Yang, Ph.D., a research associate in pathology at the Johns Hopkins University School of Medicine. "Moreover, we have shown that EXoO can be used in all types of samples including tissues, body fluids and cells."

The team developed EXoO by combining different reactions and taking advantage of a process the team had developed for studying other sugar-linked proteins and a bacterial enzyme called OpeRATOR known to cut proteins at the attachment sites of O-glycans. In short, protein samples are first digested into smaller pieces, then those pieces are attached to a solid support, which is treated with the enzyme OpeRATOR that releases small pieces of proteins at the O-glycan attachment sites. Those bits of proteins then are analyzed to determine where the sugar is attached.

"This was great. We showed that EXoO is the first tool that can both identify the site and define the site-specific glycan," says Yang.

To establish that the new process works, the team first used EXoO on a well-studied glycol-fetal calf protein, known to contain six potential O-glycan attachment sites. After running this protein through EXoO, the team was able to confirm all six known sites as well as identify a seventh site.

The team then asked if EXoO could be used on a larger scale with complex mixtures of proteins. So it applied the EXoO method to normal and cancerous kidney tissue samples from three patients with clear cell renal carcinoma, T cells and blood serum. From the kidney tissues, the researchers were able to map 35,848 protein pieces to 2,804 O-glycan-containing proteins with 1,781 attachment sites from 592 proteins; from the T cells, 4,623 protein pieces to 1,982 O-glycan proteins with 1,295 attachment sites from 590 proteins; and from blood serum, 6,157 protein pieces to 1,060 O-glycan proteins with 732 attachment sites from 306 total proteins.

Upon comparing its data to work done by others previously and collected in three glycoproteome databases, the research team's results revealed 2,580 O-glycan sites that had never before been reported, an increase of 94 percent of known sites.

The researchers found 56 proteins that were different in O-glycan attachment when comparing normal to tumor kidney tissues, whereas two well-known proteins not associated with kidney cancer showed new changes in tumor cells compared to normal cells. The researchers say these results suggest that O-glycan attachments to proteins is dynamic and can be very specific to disease.

"We are hopeful that this tool will be useful to researchers and those studying the roles of O-linked glycosylation in normal biology and diseases," says Hui Zhang, Ph.D., M.S., a professor of pathology at the Johns Hopkins University School of Medicine and senior author on the report.
-end-
Other authors of the paper were Johns Hopkins Medicine researchers Minghui Ao, Yingwei Hu, Qing Kay Li and Hui Zhang.

The study was supported by the National Institute of Allergy and Infectious Diseases, the National Cancer Institute's Early Detection Research Network, the Clinical Proteomic Tumor Analysis Consortium, the National Heart, Lung and Blood Institute's Programs of Excellence in Glycosciences, and the Foundation for AIDS Research (amfAR) on Bringing Bioengineers to Cure HIV.

The researchers report no relevant financial disclosures.

Johns Hopkins Medicine

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

The High-Protein Vegetarian Cookbook: Hearty Dishes that Even Carnivores Will Love
by Katie Parker (Author), Kristen Smith (Author)

Proteins: Concepts in Biochemistry
by Paulo Almeida (Author)

Proteins: Structure and Function
by David Whitford (Author)

Plant-Protein Recipes That You'll Love: Enjoy the goodness and deliciousness of 150+ healthy plant-protein recipes!
by Carina Wolff (Author)

Protein Actions: Principles and Modeling
by Ivet Bahar (Author), Robert L. Jernigan (Author), Ken A. Dill (Author)

Protein Power: The High-Protein/Low Carbohydrate Way to Lose Weight, Feel Fit, and Boost Your Health-in Just Weeks!
by Michael R. Eades (Author), Mary Dan Eades (Author)

The High-Protein Cookbook: More than 150 healthy and irresistibly good low-carb dishes that can be on the table in thirty minutes or less.
by Linda West Eckhardt (Author), Katherine West Defoyd (Author)

The Ultimate Protein Powder Cookbook: Think Outside the Shake (New format and design)
by Anna Sward (Author)

The Protein Power Lifeplan
by Michael R. Eades (Author), Mary Dan Eades (Author)

Janeva's Ideal Recipes: A Personal Recipe Collection for the Ideal Protein Phase 1 Diet [Revised Version 1]
by Janeva Caroline Eickhoff (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.