Nav: Home

Virus- and oncogene-free reprogramming method for the production of iPSCs published in the journal

December 06, 2018

Cellular Engineering Technologies, the John Paul II Medical Research Institute and the University of Iowa (all IA, USA) have announced a new milestone in the field of regenerative medicine involving the creation of safer and non-controversial pluripotent stem cells from cord blood and peripheral blood obtained from donors. The group, led by Alan Moy (from the above institutions), published their research findings in the scientific journal Regenerative Medicine in an ahead-of-print, open access article entitled "Virus-free and oncogene-free induced pluripotent stem cell reprogramming in cord blood and peripheral blood in patients with lung disease." The study presents, for the first time, a novel approach for the creation of iPSCs without the need to use viruses and, more importantly, the standard oncogenes (cancer genes) used to produce iPSCs.

The study creates new opportunities to extend the diversity and lifelong utility of cord blood. Parents currently bank their child's cord blood for presumed future private use. However, private cord blood storage has several shortcomings, which include rare and limited therapeutic indications during childhood, as well as an insufficient number and diversity of stem cells to treat chronic disease in adulthood.

The study also reports the creation of iPSCs from peripheral blood in patients with cystic fibrosis and alpha one antitrypsin deficiency, a genetic cause of chronic obstructive pulmonary disease. The production of safer pluripotent stem cells from peripheral blood offer more predictive patient models of disease for drug development without untoward influences from viral and oncogenic effects. In addition, the approach provides a safer autologous (patient's own) pluripotent stem cell therapy for future use. The technology aims to advance personalized and regenerative medicine, drug discovery and bio-banking. Virus- and oncogene-free iPSCs are expected to offer broader utility than the direct use of cord blood for a diverse spectrum of diseases, including neurodegenerative, cardiopulmonary, retinal, arthritic, metabolic and autoimmune disorders and cancer.

"We appreciate Regenerative Medicine for publishing this important study", stated Alan Moy. "This virus and oncogene-free iPSC reprogramming for CD34+ cells and adherent cells represents a milestone that addresses the safety challenges inherent with pluripotent stem cell therapies."
-end-
The presented open access article, "Virus-free and oncogene-free induced pluripotent stem cell reprogramming in cord blood and peripheral blood in patients with lung disease," can be accessed online at: https://www.futuremedicine.com/doi/10.2217/rme-2018-0041

For more information, contact: info@celleng-tech.com or phone: (319) 688-7367 (John Paul II Medical Research Institute).

About Regenerative

Regenerative Medicine (Medline, IF (2017):2.992) is part of the internationally recognized Future Medicine portfolio and is supported by a multidisciplinary, international editorial board comprising leading researchers and opinion leaders from academia and industry, including Senior Editor Chris Mason (UCL, UK), and Associate Editors Robert Lanza (Astellas GRM, CA, USA), Phillipe Menasché (Hôpital Européen Georges Pompidou, FR), Gail Naughton (Histogen Inc., CA, USA) and Glyn Stacey (International Stem Cell Banking Initiative, UK).

Regenerative Medicine focuses on the entire spectrum of approaches in regenerative medicine, including small molecule drugs, biologics, biomaterials, tissue engineering, and cell and gene therapies. The peer-reviewed journal uniquely supports this important area of biomedical science and healthcare by publishing the very best research and opinion, encompassing all aspects of the sector ranging from discovery research, to clinical development and commercialization.

For additional information on the journal's aims and scope, editorial board and the latest content, please visit the the Future Medicine website: https://www.futuremedicine.com/journal/rme

The journal is also partnered with RegMedNet, a free eCommunity aiming to promote global collaboration between all members of the regenerative medicine field as well as keep users up to date with the latest news and opinion, by providing exclusive features, webinars and more.

About Future Science Group (FSG)

Founded in 2001, London-based FSG is a progressive publisher focused on breakthrough medical, biotechnological and scientific research. FSG's portfolio includes two imprints, Future Science and Future Medicine. In addition to the core journal publishing business, FSG develops specialist eCommunities. Key titles and sites include Bioanalysis Zone, RegMedNet, Nanomedicine and the award-winning Regenerative Medicine.

The aim of FSG is to service the advancement of clinical practice and drug research by enhancing the efficiency of communications among clinicians, researchers and decision-makers, and by providing innovative solutions to their information needs. This is achieved through a customer-centric approach, use of new technologies, products that deliver value-for-money and uncompromisingly high standards. Please see http://www.futuremedicine.com for more information.

Future Science Group

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...