Nav: Home

Virus- and oncogene-free reprogramming method for the production of iPSCs published in the journal

December 06, 2018

Cellular Engineering Technologies, the John Paul II Medical Research Institute and the University of Iowa (all IA, USA) have announced a new milestone in the field of regenerative medicine involving the creation of safer and non-controversial pluripotent stem cells from cord blood and peripheral blood obtained from donors. The group, led by Alan Moy (from the above institutions), published their research findings in the scientific journal Regenerative Medicine in an ahead-of-print, open access article entitled "Virus-free and oncogene-free induced pluripotent stem cell reprogramming in cord blood and peripheral blood in patients with lung disease." The study presents, for the first time, a novel approach for the creation of iPSCs without the need to use viruses and, more importantly, the standard oncogenes (cancer genes) used to produce iPSCs.

The study creates new opportunities to extend the diversity and lifelong utility of cord blood. Parents currently bank their child's cord blood for presumed future private use. However, private cord blood storage has several shortcomings, which include rare and limited therapeutic indications during childhood, as well as an insufficient number and diversity of stem cells to treat chronic disease in adulthood.

The study also reports the creation of iPSCs from peripheral blood in patients with cystic fibrosis and alpha one antitrypsin deficiency, a genetic cause of chronic obstructive pulmonary disease. The production of safer pluripotent stem cells from peripheral blood offer more predictive patient models of disease for drug development without untoward influences from viral and oncogenic effects. In addition, the approach provides a safer autologous (patient's own) pluripotent stem cell therapy for future use. The technology aims to advance personalized and regenerative medicine, drug discovery and bio-banking. Virus- and oncogene-free iPSCs are expected to offer broader utility than the direct use of cord blood for a diverse spectrum of diseases, including neurodegenerative, cardiopulmonary, retinal, arthritic, metabolic and autoimmune disorders and cancer.

"We appreciate Regenerative Medicine for publishing this important study", stated Alan Moy. "This virus and oncogene-free iPSC reprogramming for CD34+ cells and adherent cells represents a milestone that addresses the safety challenges inherent with pluripotent stem cell therapies."
-end-
The presented open access article, "Virus-free and oncogene-free induced pluripotent stem cell reprogramming in cord blood and peripheral blood in patients with lung disease," can be accessed online at: https://www.futuremedicine.com/doi/10.2217/rme-2018-0041

For more information, contact: info@celleng-tech.com or phone: (319) 688-7367 (John Paul II Medical Research Institute).

About Regenerative

Regenerative Medicine (Medline, IF (2017):2.992) is part of the internationally recognized Future Medicine portfolio and is supported by a multidisciplinary, international editorial board comprising leading researchers and opinion leaders from academia and industry, including Senior Editor Chris Mason (UCL, UK), and Associate Editors Robert Lanza (Astellas GRM, CA, USA), Phillipe Menasché (Hôpital Européen Georges Pompidou, FR), Gail Naughton (Histogen Inc., CA, USA) and Glyn Stacey (International Stem Cell Banking Initiative, UK).

Regenerative Medicine focuses on the entire spectrum of approaches in regenerative medicine, including small molecule drugs, biologics, biomaterials, tissue engineering, and cell and gene therapies. The peer-reviewed journal uniquely supports this important area of biomedical science and healthcare by publishing the very best research and opinion, encompassing all aspects of the sector ranging from discovery research, to clinical development and commercialization.

For additional information on the journal's aims and scope, editorial board and the latest content, please visit the the Future Medicine website: https://www.futuremedicine.com/journal/rme

The journal is also partnered with RegMedNet, a free eCommunity aiming to promote global collaboration between all members of the regenerative medicine field as well as keep users up to date with the latest news and opinion, by providing exclusive features, webinars and more.

About Future Science Group (FSG)

Founded in 2001, London-based FSG is a progressive publisher focused on breakthrough medical, biotechnological and scientific research. FSG's portfolio includes two imprints, Future Science and Future Medicine. In addition to the core journal publishing business, FSG develops specialist eCommunities. Key titles and sites include Bioanalysis Zone, RegMedNet, Nanomedicine and the award-winning Regenerative Medicine.

The aim of FSG is to service the advancement of clinical practice and drug research by enhancing the efficiency of communications among clinicians, researchers and decision-makers, and by providing innovative solutions to their information needs. This is achieved through a customer-centric approach, use of new technologies, products that deliver value-for-money and uncompromisingly high standards. Please see http://www.futuremedicine.com for more information.

Future Science Group

Related Stem Cells Articles:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.
More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.