Nav: Home

High-temperature electronics? That's hot

December 06, 2018

From iPhones on Earth to rovers on Mars, most electronics only function within a certain temperature range. By blending two organic materials together, researchers at Purdue University could create electronics that withstand extreme heat.

This new plastic material could reliably conduct electricity in up to 220 degrees Celsius (428 F), according to a paper published Thursday in the journal Science.

"Commercial electronics operate between minus 40 and 85 degrees Celsius. Beyond this range, they're going to malfunction," said Jianguo Mei, a professor of organic chemistry at Purdue University. "We created a material that can operate at high temperatures by blending two polymers together."

One of these is a semiconductor, which can conduct electricity, and the other is a conventional insulating polymer, which is what you might picture when you think of regular plastic. To make this technology work for electronics, the researchers couldn't just meld the two together - they had to tinker with ratios.

"One of the plastics transports the charge, and the other can withstand high temperatures," said Aristide Gumyusenge, lead author of the paper and graduate researcher at Purdue. "When you blend them together, you have to find the right ratio so that they merge nicely and one doesn't dominate the other."

The researchers discovered a few properties that are essential to make this work. The two materials need to be compatible to mixing and should each be present in roughly the same ratio. This results in an organized, interpenetrating network that allows the electrical charge to flow evenly throughout while holding its shape in extreme temperatures.

Most impressive about this new material isn't its ability to conduct electricity in extreme temperatures, but that its performance doesn't seem to change. Usually, the performance of electronics depends on temperature - think about how fast your laptop would work in your climate-controlled office versus the Arizona desert. The performance of these new polymer blend remains stable across a wide temperature range.

Extreme-temperature electronics might be useful for scientists in Antarctica or travelers wandering the Sahara, but they're also critical to the functioning of cars and planes everywhere. In a moving vehicle, the exhaust is so hot that sensors can't be too close and fuel consumption must be monitored remotely. If sensors could be directly attached to the exhaust, operators would get a more accurate reading. This is especially important for aircraft, which have hundreds of thousands of sensors.

"A lot of applications are limited by the fact that these plastics will break down at high temperatures, and this could be a way to change that," said Brett Savoie, a professor of chemical engineering at Purdue. "Solar cells, transistors and sensors all need to tolerate large temperature changes in many applications, so dealing with stability issues at high temperatures is really critical for polymer-based electronics."

The researchers will conduct further experiments to figure out what the true temperature limits are (high and low) for their new material. Making organic electronics work in the freezing cold is even more difficult than making them work in extreme heat, Mei said.
-end-


Purdue University

Related Polymer Articles:

New polymer material may help batteries become self-healing, recyclable
Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery's liquid electrolytes, leading to explosions and fires.
Unique polymer fibres: Light, strong, and tough
Strong and tough yet as light as a feather - materials with this exceptional combination of properties are urgently needed in many industrial sectors and in medicine, as well as being of great interest for scientific research.
Researchers add order to polymer gels
Gel-like materials have a wide range of applications, especially in chemistry and medicine.
Bundlemers (new polymer units) could transform industries
From tires to clothes to shampoo, many ubiquitous products are made with polymers, large chain-like molecules made of smaller sub-units, called monomers, bonded together.
New synthetic polymer degradable under very mild acidic conditions
A new type of degradable synthetic polymer was prepared by Rh-catalyzed three-component polymerization of a bis(diazocarbonyl) compound, bis(1,3-diketone), and tetrahydrofuran.
New polymer tackles PFAS pollution
toxic polyfluorinated alkyl substances (PFAS) pollution -- commonly used in non-stick and protective coatings, lubricants and aviation fire-fighting foams -- can now be removed from the environment thanks to a new low-cost, safe and environmentally friendly polymer.
New polymer films conduct heat instead of trapping it
MIT engineers have flipped the picture of the standard polymer insulator, by fabricating thin polymer films that conduct heat -- an ability normally associated with metals.
Polymer reversibly glows white when stretched
Polymers that change their appearance in response to mechanical forces can warn of damage developing in a material before the stress causes structural failure.
New materials: Growing polymer pelts
Polymer pelts made of the finest of fibers are suitable for many different applications, from coatings that adhere well and are easy to remove to highly sensitive biological detectors.
A record-long polymer DNA negative
A fragment of a single strand of DNA, built of the nucleobases cytosine and guanine, can be imprinted in a polymer - this has been shown by chemists from Warsaw, Denton and Milan.
More Polymer News and Polymer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.