To accelerate or decelerate in the light-emitting process of zinc-oxide crystals

December 06, 2020

A recent study has measured the internal quantum efficiency (IQE) of Zinc-Oxide (ZnO) crystals in both the light-emitting process and non-light-emitting process.

"Obtaining a quantitative breakdown of IQE from both processes allows us to better design semiconductors to improve IQE," said professor Kazunobu Kojima, lead author of the study.

Highly efficient electronic and optical devices are essential for reducing energy consumption and for the realization of an eco-friendly society.

ZnO is an attractive material among direct-bandgap semiconductors. They possess light-emitting properties as well as toughness to sustain large electric field that enables them to power electronic devices because of their large bandgap energy and large exciton binding energy. This also makes them suitable in radiation-resistant thin-film-transistors and heterostructure field-effect-transistors.

In high-quality ZnO crystals, nonradiative recombination centers (NRCs) are important for the near-band-edge (NBE) emission. These centers act as undesired energy dissipation channels and reduce the IQE of the NBE emission.

To understand whether the light-emitting process or the non-light-emitting process was more important in determining the behavior of IQE, Kojima and his colleagues measured the IQE values of Zn0 crystal grown by the hydrothermal method. To do so, they employed a technique created by Kojima and fellow researchers known as omnidirectional photoluminescence (ODP) spectroscopy - a nondestructive method for probing semiconducting crystals with light to detect defects and impurities.

The IQE characteristics in ZnO crystals were examined under photo pumping conditions. IQE values indicated a constant behavior for weak photo pumping conditions and a monotonic increase for strong excitation. Because a significant decrease was observed for the non-light-emitting process with photo pumping, the origin of the IQE increase was revealed to be dominated by the deceleration of the non-light-emitting process due to the saturation of NRCs.
-end-


Tohoku University

Related Behavior Articles from Brightsurf:

Variety in the migratory behavior of blackcaps
The birds have variable migration strategies.

Fishing for a theory of emergent behavior
Researchers at the University of Tsukuba quantified the collective action of small schools of fish using information theory.

How synaptic changes translate to behavior changes
Learning changes behavior by altering many connections between brain cells in a variety of ways all at the same time, according to a study of sea slugs recently published in JNeurosci.

I won't have what he's having: The brain and socially motivated behavior
Monkeys devalue rewards when they anticipate that another monkey will get them instead.

Unlocking animal behavior through motion
Using physics to study different types of animal motion, such as burrowing worms or flying flocks, can reveal how animals behave in different settings.

AI to help monitor behavior
Algorithms based on artificial intelligence do better at supporting educational and clinical decision-making, according to a new study.

Increasing opportunities for sustainable behavior
To mitigate climate change and safeguard ecosystems, we need to make drastic changes in our consumption and transport behaviors.

Predicting a protein's behavior from its appearance
Researchers at EPFL have developed a new way to predict a protein's interactions with other proteins and biomolecules, and its biochemical activity, merely by observing its surface.

Spirituality affects the behavior of mortgagers
According to Olga Miroshnichenko, a Sc.D in Economics, and a Professor at the Department of Economics and Finance, Tyumen State University, morals affect the thinking of mortgage payers and help them avoid past due payments.

Asking if behavior can be changed on climate crisis
One of the more complex problems facing social psychologists today is whether any intervention can move people to change their behavior about climate change and protecting the environment for the sake of future generations.

Read More: Behavior News and Behavior Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.