Natural protein stops deadly human brain cancer in mice

December 07, 2006

Scientists from Johns Hopkins and from the University of Milan have effectively proven that they can inhibit lethal human brain cancers in mice using a protein that selectively induces positive changes in the activity of cells that behave like cancer stem cells. The report is published this week in Nature.

The most common type of brain cancer-glioblastoma-is marked by the presence of these stem-cell-like brain cells, which, instead of triggering the replacement of damaged cells, form cancer tissue. Stem cells, unlike all other cells in the body, are capable of forming almost any kind of cell when the right "signals" trigger their development.

For their treatment experiment, the researchers relied on a class of proteins, bone morphogenic proteins, that cause neural stem-cell-like clusters to lose their stem cell properties, which in turn stops their ability to divide.

First they pretreated human glioblastoma cells with bone morphogenic protein 4 (BMP4), then injected these treated cells into mouse brains. In mice injected with cells that were not pretreated, large, invasive cancers grew. In the mice with BMP4-treated cells, no cancers grew at all. Three to four months after injection, all mice that got untreated cells died, and nearly all mice with BMP4-treated cells were alive.

Next, the scientists delivered slow-release BMP4-containing "beads" directly into mouse brains with implanted glioblastoma cells. Mice that got empty beads developed large malignant tumors and died. Mice with BMP4 beads survived much longer, and 80 percent survived four months after cancer cell implants.

"Our idea is to treat patients with BMP4 or something like it right after surgery to remove glioblastoma in hopes of preventing the regrowth of the cancer and improving survival time," says Alessandro Olivi, M.D., director of the Division of Neurosurgical Oncology at Hopkins and a contributor to the study.

Olivi says clinical studies using BMP4 could begin within a year and, if successful, drug therapies could be available to the public within three to four years.

"This was proof of the idea that BMPs could stop glioblastoma by depleting the stem-cell-like population that feeds it," says Henry Brem, M.D., chairman of the Department of Neurosurgery at Hopkins and a collaborator in the study. "This opens exciting doors to future research into treatments and therapies for such a devastating disease."
-end-


Johns Hopkins Medicine

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.