Infectious disease researchers develop basis for experimental melanoma treatment

December 07, 2006

While investigating a fungus known to cause an infection in people with AIDS, two grantees of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), unexpectedly discovered a potential strategy for treating metastatic melanoma, one of the deadliest forms of skin cancer. The treatment approach, which involves combining an antibody with radiation, has since been further developed and is expected to enter early-stage human clinical studies in 2007.

"This is an excellent example of how scientific research in one discipline may have payoffs in a completely unpredictable way," says NIAID Director Anthony S. Fauci, M.D. "This important AIDS-related research has led to the development of a promising therapeutic strategy for a terrible cancer that affects thousands of people each year."

Arturo Casadevall, M.D., Ph.D., of the Albert Einstein College of Medicine at Yeshiva University, in New York City, and his research team began studying the biology of the skin pigment melanin to better understand why its synthesis plays a role in the process whereby certain yeast-like fungi, specifically Cryptococcus neoformans, cause disease in some people. C. neoformans can cause cryptococcosis, a potentially fatal fungal infection that can lead to inflammation of the brain and death in people with AIDS and other immunocompromised individuals.

The researchers created an infection-fighting antibody, known as a monoclonal antibody, that binds to melanin based on scientific evidence suggesting that when melanin is synthesized, it causes the immune system to react in a way that might create antibodies to fend off C. neoformans infection. Based on this finding, Dr. Casadevall theorized that melanomas might contain melanin that would allow the monoclonal antibody to deliver radiation to tumor cells. Dr. Casadevall then teamed with his colleague Ekaterina Dadachova, Ph.D., an expert in nuclear medicine and fellow NIAID grantee, to investigate whether the melanin-binding antibody could be converted into an anti-tumor drug.

In a study published in October 2004, Dr. Casadevall and Dr. Dadachova, the study's lead author, combined the C. neoformans monoclonal antibodies with radiation to create radiolabeled antibodies. They then tested these radiolabeled antibodies in mice to determine their effectiveness in attacking melanoma tumors. Initially, the mice had melanoma tumors ranging from 0.6 to 1.0 centimeters (cm) in diameter. After receiving a single dose of the radiolabeled antibodies, tumor growth was completely inhibited and near total tumor regression occurred in those animals with smaller tumors (0.6 to 0.7 cm in diameter). Further, the treated mice showed no signs of kidney or other organ damage and none died during the 30-day study. Conversely, tumors continued to aggressively grow in the untreated control group and by day 20, all but one of the eight untreated mice had died.

In November 2006, Pain Therapeutics, Inc., a San Francisco-based biopharmaceutical company, licensed the radiolabeled monoclonal antibody technology from the Albert Einstein College of Medicine. The company intends to begin testing it as a metastatic melanoma treatment in small human clinical trials in 2007. According to the American Cancer Society, melanoma accounts for approximately five percent of all skin cancers but causes roughly 75 percent of all skin cancer-related deaths.

Dr. Casadevall credits his promising discovery to luck and a hunch that paid off. "Scientific breakthroughs often occur completely through serendipity, and this is just one of those instances," says Dr. Casadevall. "We're still working on cryptococcosis and developing a general strategy for using radiolabeled monoclonal antibodies to fight infectious diseases."

His laboratory continues to examine the underlying causes of cryptococcosis, and in continued collaboration with Dr. Dadachova, is exploring the use of radiolabeled monoclonal antibodies to treat infectious diseases.
-end-
For more information about melanoma, see the National Cancer Institute Web site at: http://www.cancer.gov/.

NIAID is a component of the National Institutes of Health. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on basic immunology, transplantation and immune-related disorders, including autoimmune diseases, asthma and allergies.

The National Institutes of Health (NIH)--The Nation's Medical Research Agency--includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Reference: E Dadachova et al. Dead cells in melanoma tumors provide abundant antigen for targeted delivery of ionizing radiation by a mAb to melanin. Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.0406180101 (2004).

News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

NIH/National Institute of Allergy and Infectious Diseases

Related Skin Cancer Articles from Brightsurf:

Increasing the effectiveness of immunotherapy against skin cancer
Researchers at the University of Bern have discovered a mechanism in the body's own immune system which is responsible for the maturation and activation of immune cells.

New electronic skin can react to pain like human skin
New pain-sensing prototype mimics the body's near-instant feedback response and reacts to painful sensations with the same lighting speed that nerve signals travel to the brain.

Studying how skin cancer starts
New research by Ortiz-Rodríguez and mentor Carlos Crespo, a professor and lead researcher in the The Crespo Group lab, reveals for perhaps the first time how quickly certain pre-cancerous lesions can form on the DNA of our skin when exposed to sunlight.

Skin-to-skin 'kangaroo care' shows important benefits for premature babies
A world-first study led by Monash University has demonstrated significant benefits to a premature baby's heart and brain function when held by the parent in skin-to-skin contact.

Mother/infant skin-to-skin touch boosts baby's brain development and function
As the world prioritizes social distancing due to COVID-19, research shows that extended use of Kangaroo Care, a skin-to-skin, chest-to-chest method of caring for a baby, can positively benefit full-term infants and their mothers, with important implications for post-partum depression.

IU researcher makes skin cancer discovery
An Indiana University cancer researcher has identified eight new genomic regions that increase a person's risk for skin cancer.

Skin-to-skin contact do not improve interaction between mother and preterm infant
Following a premature birth it is important that the parents and the infant quickly establish a good relationship.

Research reveals potential dangers during skin-to-skin contact for mother and baby following cesarean section birth
Research in the latest edition of the European Journal of Anaesthesiology (the official journal of the European Society of Anaesthesiology) reports the potential dangers of allowing skin-to-skin contact for mother and baby in the operating room, following a cesarean section birth.

Helping skin cells differentiate could be key to treating common skin cancer
A new study from Penn researchers has identified the key regulator that controls how the skin replaces itself and which can determine if cells turn into cancer.

Protein linked to aggressive skin cancer
Almost 300,000 people worldwide develop malignant melanoma each year. The disease is the most serious form of skin cancer and the number of cases reported annually is increasing, making skin cancer one of Sweden's most common forms of cancer.

Read More: Skin Cancer News and Skin Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.