Ancient ape ruled out of man's ancestral line

December 07, 2006

Ancient remains, once thought to be a key link in the evolution of mankind, have now been shown to be 400,000 years too young to be a part of man's family tree.

The remains of the apeman, dubbed Little Foot, were discovered in a cave complex at Sterkfontein by a local South African team in 1997. Its bones preserved in sediment layers, it is the most complete hominid fossil skeleton ever found.

Little Foot is of the genus Australopithecus, thought by some to be part of the ancestral line which led directly to man. But research by Dr Jo Walker and Dr Bob Cliff of the University of Leeds School of Earth and Environment, with Dr Alf Latham of Liverpool University's School of Archaeology, Classics and Egyptology, shows the remains are more than a million years younger than earlier estimates.

The team used uranium lead chronology to date the remains. Working on extracts of stalagmite deposits from immediately above and below the body, they dated the skeleton at around 2.2 million years old.

Their findings, published in the American journal Science, are controversial. Earlier estimates had put the age of Little Foot at three to four million years old placing it potentially on a direct line to humans.

The first recognisable stone tools appeared in Africa around 2.6 million years ago, but they were not made by Australopiths. Rather it is thought the first tool maker was Homo habilis, whose evolution is believed to have led directly to man. Rather than being older than Homo habilis - and a possible direct ancestor - Little Foot is more likely a distant cousin.

His remains are cemented in hard mineral deposits in the Sterkfontein cave complex which has yielded a number of other ancient finds. It is thought he either fell down a shaft or somehow got trapped in the cave and died there to be covered by the sediment layers from which he is now being slowly extracted. These sediments are themselves sandwiched between stalagmite layers which provided the materials for the dating process.

Australopithecus walked on two legs, but stood just 130cm tall and had a brain comparable in size with a modern chimpanzee. As Dr Walker explained: "In many of these finds, the smallest bones have disintegrated, but here the feet and hands are well preserved - and these could enable researchers to show how well adapted this early primate was to walking on two feet."

But the sediment encasing Little Foot is harder than the bone - making extracting him a painstaking process for the South African team.

And Drs Latham and Cliff have now turned their own attention to further Australopith findings at Makapansgat, also in South Africa, where other specimens of Australopithecus have been found.
-end-


University of Leeds

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.