Engineered yeast speeds ethanol production

December 07, 2006

Scientists from Whitehead Institute and MIT have engineered yeast that can improve the speed and efficiency of ethanol production, a key component to making biofuels a significant part of the U.S. energy supply.

Currently used as a fuel additive to improve gasoline combustibility, ethanol is often touted as a potential solution to the growing oil-driven energy crisis. But there are significant obstacles to producing ethanol. One is that high ethanol levels are toxic to the yeast that ferments corn and other plant material into ethanol.

By manipulating the yeast genome, the researchers have engineered a new strain of yeast that can tolerate elevated levels of both ethanol and glucose, while producing ethanol faster than un-engineered yeast.

The work will be reported in the Dec. 8 issue of Science.

Fuels such as E85, which is 85 percent ethanol, are becoming common in states where corn is plentiful; however, their use is mainly confined to the Midwest because corn supplies are limited and ethanol production technology is not yet efficient enough.

Boosting efficiency has been an elusive goal, but the researchers, led by Hal Alper, a postdoctoral associate in the laboratories of MIT chemical engineering professor Gregory Stephanopoulos and Whitehead Member Gerald Fink, took a new approach.

The team targeted two proteins that belong to a class of proteins called transcription factors. These proteins typically control large groups of genes, regulating when these genes are turned on or shut off.

When the researchers altered a transcription factor called the TATA-binding protein, it caused the over-expression of at least a dozen genes, all of which were found to be necessary to elicit an improved ethanol tolerance. As a result, that strain of yeast was able to survive high ethanol concentrations.

In addition, this altered strain produced 50 percent more ethanol during a 21-hour period than normal yeast.

The prospect of using this approach to engineer similar tolerance traits in industrial yeast could dramatically impact industrial ethanol production, a multi-step process in which yeast plays a crucial role. First, cornstarch or another polymer of glucose is broken down into single sugar (glucose) molecules by enzymes, then yeast ferments the glucose into ethanol and carbon dioxide.

Last year, four billion gallons of ethanol were produced from 1.43 billion bushels of corn grain (including kernels, stalks, leaves, cobs, husks) in the United States, according to the Department of Energy. In comparison, the United States consumed about 140 billion gallons of gasoline.
-end-
Other co-authors on the paper are Joel Moxley, an MIT graduate student in chemical engineering, and Elke Nevoigt of the Berlin University of Technology.

The research was funded by the DuPont-MIT Alliance, the Singapore-MIT Alliance, the National Institutes of Health and the U.S. Department of Energy.

Whitehead Institute for Biomedical Research

Related Ethanol Articles from Brightsurf:

Spraying ethanol to nanofiber masks makes them reusable
A joint research team from POSTECH and Japan's Shinshu University evaluates the filtration efficiency of nanofiber and melt-blown filters when cleaned with ethanol.

Anaerobically disinfect soil to increase phosphorus using diluted ethanol
Anaerobic disinfection of soil is an effective method to kill unwanted bacteria, parasites and weeds without using chemical pesticides.

Fractionation processes can improve profitability of ethanol production
The US is the world's largest producer of bioethanol as renewable liquid fuel, with more than 200 commercial plants processing over 16 billion gallons per year.

Ethanol fuels large-scale expansion of Brazil's farming land
A University of Queensland-led study has revealed that future demand for ethanol biofuel could potentially expand sugarcane farming land in Brazil by 5 million hectares by 2030.

Measuring ethanol's deadly twin
ETH Zurich researchers have developed an inexpensive, handheld measuring device that can distinguish between methanol and potable alcohol.

Modified enzyme can increase second-generation ethanol production
Using a protein produced by a fungus that lives in the Amazon, Brazilian researchers developed a molecule capable of increasing glucose release from biomass for fermentation.

Scientists develop a chemocatalytic approach for one-pot reaction of cellulosic ethanol
Scientists at the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences have developed a chemocatalytic approach to convert cellulose into ethanol in a one-pot process by using a multifunctional Mo/Pt/WOx catalyst.

New core-shell catalyst for ethanol fuel cells
Scientists at Brookhaven Lab and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources.

Yeast makes ethanol to prevent metabolic overload
Why do some yeast cells produce ethanol? Scientists have wondered about this apparent waste of resources for decades.

Corncob ethanol may help cut China's greenhouse gas emissions
A new Biofuels, Bioproducts and Biorefining study has found that using ethanol from corncobs for energy production may help reduce greenhouse gas emissions in China, if used instead of starch-based ethanol.

Read More: Ethanol News and Ethanol Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.