New approach to sickle cell disease shows promise in mice

December 07, 2009

A new genetic approach to treating sickle cell disease is showing promising results in mice, report researchers from Children's Hospital Boston. By inactivating a gene they previously discovered to be important in the laboratory, they were able to boost production of a healthy fetal form of hemoglobin in the mice, potentially compensating for the defective adult hemoglobin that causes red blood cells to "sickle" and obstruct blood flow.

The study was presented by first author Jian Xu, PhD, on Sunday, December 6, at the American Society for Hematology meeting in New Orleans, at a 3 p.m. Plenary Scientific Session.

Currently, there are only a limited number of therapies available for patients with sickle cell disease, the most common inherited blood disorder in the U.S., says senior study author Stuart H. Orkin, MD, of Children's Division of Hematology/Oncology, also David G. Nathan Professor of Pediatrics at Harvard Medical School.

Shortly after birth, babies switch from producing the fetal form of hemoglobin, the protein inside red blood cells that carries oxygen, to producing the adult form - the type that is affected in sickle cell disease. It's long been known that people who retain the ability to produce fetal hemoglobin have much milder disease. In previous studies (http://www.childrenshospital.org/newsroom/Site1339/mainpageS1339P1sublevel485.html), the Children's researchers, with collaborators, found that a gene called BCL11A is involved in switching off fetal hemoglobin production in adults. Working with genetically engineered mice, they then explored whether that switch could be turned back on to alleviate the disease.

In embryonic mice, inactivation of the BCL11A gene led to a robust expression of gamma-globin (the long protein chains making up the fetal form of hemoglobin) during late gestation: more than 90 percent of the globin produced was of this fetal type. In adult mice (8-10 weeks old), inactivation of the BCL11A gene in the blood system resulted in more than a 1,000-fold increase in gamma-globin production in bone marrow erythroblasts (the precursors to red blood cells) as compared with control mice. This increase was rapid and persisted during the course of the experiments (up until the mice were 25 weeks old).

This line of research began with comprehensive gene association studies, published in 2008 with collaborators at the Broad Institute of Harvard and MIT (http://www.childrenshospital.org/newsroom/Site1339/mainpageS1339P1sublevel452.html). These studies, involving 1600 patients with sickle cell disease, identified five DNA sequence variants (altered strings of genetic code) that correlated with fetal hemoglobin levels. BCL11A, on chromosome 2, had the largest effect, and Orkin and Vijay Sankaran, an MD-PhD student working with Orkin, later demonstrated that this gene directly suppresses fetal hemoglobin production.

If these preliminary results in mice hold up in human studies, inactivating BCL11A may also help patients with thalassemia, another blood disorder involving abnormal hemoglobin, adds Orkin.
-end-
This study was funded by grants from the National Heart, Lung and Blood Institute, the National Institute of Diabetes and Digestive and Kidney Diseases, the Howard Hughes Medical Institute.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 13 members of the Institute of Medicine and 12 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 396-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital and its research visit: www.childrenshospital.org/newsroom.

Boston Children's Hospital

Related Red Blood Cells Articles from Brightsurf:

SMART researchers develop fast and efficient method to produce red blood cells
Researchers from Singapore-MIT developed a faster and more efficient way to manufacture red blood cells that cuts down on cell culture time by half.

Synthetic red blood cells mimic natural ones, and have new abilities
Scientists have tried to develop synthetic red blood cells that mimic the favorable properties of natural ones, such as flexibility, oxygen transport and long circulation times.

Exeter student leads research concluding that small red blood cells could indicate cancer
Having abnormally small red blood cells - a condition known as microcytosis - could indicate cancer, according to new research led by a University of Exeter student working with a world-leading team.

Physicists design 'super-human' red blood cells to deliver drugs to specific targets
A team of physicists from McMaster University has developed a process to modify red blood cells so they can be used to distribute drugs throughout the body, which could specifically target infections or treat catastrophic diseases such as cancer or Alzheimer's.

Blood transfusions: Fresh red blood cells no better than older ones
Findings from the ABC-PICU study on critically ill children may alter policies at hospitals where fresh red cells are preferentially used.

Fresh red blood cell transfusions do not help critically ill children more than older cells
Researchers have found that transfusions using fresh red blood cells -- cells that have spent seven days or less in storage -- are no more beneficial than older red blood cells in reducing the risk of organ failure or death in critically ill children.

Red blood cell donor pregnancy history not tied to mortality after transfusion
A new study has found that the sex or pregnancy history of red blood cell donors does not influence the risk of death among patients who receive their blood.

How sickled red blood cells stick to blood vessels
An MIT study describes how sickled red blood cells get stuck in tiny blood vessels of patients with sickle-cell disease.

Novel gene in red blood cells may help adult newts regenerate limbs
Adult newts can repeatedly regenerate body parts. Researchers from Japan, including the University of Tsukuba, and the University of Daytona, have identified Newtic1, a gene that is expressed in clumps of red blood cells in the circulating blood.

Healthy red blood cells owe their shape to muscle-like structures
The findings could shed light on sickle cell diseases and other disorders where red blood cells are deformed.

Read More: Red Blood Cells News and Red Blood Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.