New computer model could lead to safer stents

December 07, 2009

After suffering heart attacks, patients often receive stents designed to hold their arteries open. Some of these stents release drugs that are meant to halt tissue growth in arteries, but can have life-threatening side effects such as increasing the likelihood of blood clots and heart attacks.

Now a team of researchers in the MIT-Harvard Division of Health Sciences and Technology has developed a computer model that explains why those drugs (which include rapamycin and its analogs as well as paclitaxel) can accumulate in the arteries and cause blood clots.

The model allows the scientists to predict, for the first time, drug distribution in branched arteries. Their findings explain why drugs can pile up in certain areas, depending on where the stent is placed relative to forks in the artery.

"By observing the arterial drug distribution patterns for various settings, we understood that drug released from the stent does not reach uniformly to all regions of the vessel and this non-uniformity depends on where the stent is placed in the artery as well as the blood flow that is entering the vessel," says Edelman.

More than one million patients in the United States receive drug-releasing stents per year.

The results, reported in PLoS One, could help stent developers design safer and more effective stents and raises the possibility of designing individualized stents for patients. It could aid the FDA in its approval process for stents.
-end-
Citation: Kolachalama VB, Levine EG, Edelman ER (2009) Luminal Flow Amplifies Stent-Based Drug Deposition in Arterial Bifurcations. PLoS ONE 4(12): e8105. doi:10.1371/journal.pone.0008105

PLEASE LINK TO THE SCIENTIFIC ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://dx.plos.org/10.1371/journal.pone.0008105

Disclaimer

This press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

PLOS

Related Blood Flow Articles from Brightsurf:

Brain regions with impaired blood flow have higher tau levels
In Alzheimer's disease, impaired blood flow to brain regions coincides with tau protein buildup.

3D ultrasound enables accurate, noninvasive measurements of blood flow
A 3D ultrasound system provides an effective, noninvasive way to estimate blood flow that retains its accuracy across different equipment, operators and facilities, according to a new study.

Blood flow recovers faster than brain in micro strokes
Work by a Rice neurobiologist shows that increased blood flow to the brain is not an accurate indicator of neuronal recovery after a microscopic stroke.

Exercise improves memory, boosts blood flow to brain
Scientists have collected plenty of evidence linking exercise to brain health, with some research suggesting fitness may even improve memory.

3D VR blood flow to improve cardiovascular care
Biomedical engineers are developing a massive fluid dynamics simulator that can model blood flow through the full human arterial system at subcellular resolution.

MRI shows blood flow differs in men and women
Healthy men and women have different blood flow characteristics in their hearts, according to a new study.

Brain blood flow sensor discovery could aid treatments for high blood pressure & dementia
A study led by researchers at UCL has discovered the mechanism that allows the brain to monitor its own blood supply, a finding in rats which may help to find new treatments for human conditions including hypertension (high blood pressure) and dementia.

Blood flow monitor could save lives
A tiny fibre-optic sensor has the potential to save lives in open heart surgery, and even during surgery on pre-term babies.

Changes in blood flow tell heart cells to regenerate
Altered blood flow resulting from heart injury switches on a communication cascade that reprograms heart cells and leads to heart regeneration in zebrafish.

Blood flow command center discovered in the brain
An international team of researchers has discovered a group of cells in the brain that may function as a 'master-controller' for the cardiovascular system, orchestrating the control of blood flow to different parts of the body.

Read More: Blood Flow News and Blood Flow Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.