New technology could boost disease detection tests' speed and sensitivity

December 07, 2009

New Haven, Conn.--A team led by Yale University scientists has developed a way to rapidly manipulate and sort different cells in the blood using magnetizable liquids. The findings, which will be published the week of December 7 in the online edition of the Proceedings of the National Academy of Sciences, could dramatically improve the speed and sensitivity of tests used to detect cancer biomarkers, blood disorders, viruses and other diseases.

Ferrofluids are comprised of magnetic nanoparticles suspended throughout a liquid carrier. They have been used in industrial applications for years, including in hard disk drives and loudspeakers. Now a team led by Hur Koser, associate professor at the Yale School of Engineering & Applied Science, has developed a biocompatible ferrofluid--one with the right pH level and salinity so that human cells can survive in it for several hours--and has created a device with integrated electrodes that generate a magnetic field pattern, allowing them to manipulate and separate red blood cells, sickle cells and bacteria contained in this unique solution.

The magnetic field attracts the nanoparticles in the ferrofluid, effectively pushing and shuffling the much larger, nonmagnetic cells along specific channels. Depending on the frequency of the magnetic field they apply, the researchers are also able to manipulate and sort different types of cells depending on their size, elasticity and shape.

"It's like the cells are surfing on magnetic forces," Koser said. "When we turn on the magnetic field, the nonmagnetic cells are pushed immediately up to the top of the channel." There, they roll along the surface and can be quickly directed toward a sensor.

While other cell manipulation techniques exist, this new method is unique in that it doesn't require attaching biomarkers, or labels, to the cells and there is no need for labor-intensive preparation or post-processing.

Being able to effectively sort and move cells with this technique could allow for much greater efficiency in disease detection by directing diseased cells toward sensors. Many of today's tests require hours or even days to complete, because the concentration of diseased cells in a blood sample may be so low that it takes a long time for them to randomly bump into the sensors. In early-stage cancer, for instance, there could be one tumor cell for every billion healthy cells, making them extremely difficult to detect.

"Effective and efficient separation is very important when you're looking for a needle in a haystack," said Ayse Rezzan Kose, a graduate student in the Koser Lab and the lead author of the study. "We're hoping we can achieve an increase of several orders of magnitude in the sensitivity of existing detection technologies. If so, a blood sample analysis could be completed in minutes, not hours or days."

Koser hopes that one day the new technique will lead to portable sensors that doctors can carry into the field and which could be used to test for a range of disorders, such as cancer and HIV. "Anything you can put into the ferrofluid solution is potentially detectable in this manner."
-end-
Authors of the paper include Ayse Rezzan Kose and Hur Koser (Yale University), Birgit Fischer (Deutsches Elektronen-Synchrotron) and Leidong Mao (University of Georgia).

This research was funded by the National Science Foundation, the National Institutes of Health and the Yale Institute for Nanoscience and Quantum Engineering.

Citation: 10.1073/pnas.0912138106

Yale University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.