CCNY professor gets grant to develop 'artificial blood'

December 07, 2010

As a post-doc at The University of Pennsylvania, Dr. Ron Koder, assistant professor of physics at The City College of New York, was part of a team that devised a novel method for producing an artificial protein capable of transporting oxygen, similar to human neuroglobin. He was recently awarded a three-year $1.3 million grant from the U.S. Department of Defense to develop an artificial blood that can be administered to injured troops on the battlefield.

"Engineered blood substitutes have a lot of attractive properties compared to blood drawn from people," he said. "No typing is required, you don't have to worry about refrigeration or freshness and there is no risk of infection." They can save lives, as well, since severely wounded servicemen and women sometimes die before they can be transported to a hospital and given a transfusion.

Professor Koder will use the grant to conduct laboratory studies to improve the stability and other properties of the protein. Then, he plans to cross-link the protein into large aggregates to create particles the same size as red blood cells.

Because the artificial hemoglobin binds oxygen in the presences of carbon monoxide, the substance also has the potential to prevent or treat carbon monoxide poisoning, he noted. However, this will not be part of the investigation.

Research like Professor Koder's investigation is part of the emerging field of biological design, a system for producing biological materials from scratch. Other potential applications include fighting AIDS and alternative energy. Biological design was the topic of a daylong symposium Friday, December 3, at the New York Academy of Sciences that Professor Koder helped organize.

"Natural materials are fussy. It's hard to get them to interact," he explained. "The (manmade) stuff is better for engineering more complex systems." Some of the biological design projects underway include developing metabolic pathways that could produce low-cost AIDS drugs, using solar energy to produce bio-fuels through artificial photosynthesis and making methanol from carbon dioxide.
-end-


City College of New York

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.