Plants 'remember' winter to bloom in spring with help of special molecule

December 07, 2010

AUSTIN, Texas--The role a key molecule plays in a plant's ability to remember winter, and therefore bloom in the spring, has been identified by University of Texas at Austin scientists.

Many flowering plants bloom in bursts of color in spring after long periods of cold in the winter. The timing of blooming is critical to ensure pollination, and is important for crop production and for droves of people peeping at wildflowers.

One way for the plants to recognize the spring--and not just a warm spell during winter--is that they "remember" they've gone through a long enough period of cold.

"Plants can't literally remember, of course, because they don't have brains," says Sibum Sung, assistant professor in the Section of Molecular Cell and Developmental Biology. "But they do have a cellular memory of winter, and our research provides details on how this process works."

The process is known as vernalization, whereby a plant becomes competent to flower after a period of cold. And though it is common for many plants adapted to temperate climates, including important crops like winter wheat, it has not been until the past decade or so that scientists have begun to understand the process's genetic and molecular underpinnings.

Sung and postdoctoral fellow Jae Bok Heo have now discovered that a long, non-coding RNA molecule, named COLDAIR, is required for plants to set up a memory of winter.

They published their work on the Arabidopsis plant in Science Express on Dec. 2.

This is how it works: In fall, a gene called FLC actively represses floral production. A random bloom in fall could be a waste of precious energy.

But after a plant has been exposed to 20 days of near-freezing temperatures, the scientists found that COLDAIR becomes active. It silences the FLC gene, a process that is completed after about 30 to 40 days of cold. With the FLC silenced as temperatures warm in the spring, other genes are activated that initiate blooming.

COLDAIR helps create a cellular memory for a plant, letting it know it has been through 30 or more days of cold.

But, how does the cold actually turn on COLDAIR?

"That is one of the next questions we have," says Sung. "How do plants literally sense the cold?"

Answering these kinds of basic questions could lead to crop improvements and will be important to grasp as climate changes alter the length of the winter season, with possible repercussions to vernalization in plants around the world.
-end-
This research was supported with funds from the National Science Foundation and The University of Texas at Austin.

Additional Contact:
Lee Clippard, media relations
512-232-0675
lclippard@mail.utexas.edu

University of Texas at Austin

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.