A 'wild card' in your genes

December 07, 2011

The human genome and the endowments of genes in other animals and plants are like a deck of poker cards containing a "wild card" that in a genetic sense introduces an element of variety and surprise that has a key role in life. That's what scientists are describing in a review of more than 100 studies on the topic that appears in ACS Chemical Biology.

Rahul Kohli and colleagues focus on cytosine, one of the four chemical "bases" that comprise the alphabet that the genetic material DNA uses to spell out everything from hair and eye color to risk of certain diseases. But far from just storing information, cytosine has acquired a number of other functions that give it a claim to being the genome's wild card. "In poker, the rules of the game can occasionally change," they note in the article. "Adding a 'wild card' to the mix introduces a new degree of variety and presents opportunities for a skilled player to steal the pot. Given that evolution is governed by the same principles of risk and reward that are common to a poker game, it is perhaps not surprising that a genomic 'wild card' has an integral role in biology."

They discuss the many faces of cytosine that make it such a game-changer and the biological processes that help to change its identity. Removing something called an amine group from cytosine, for instance, allows the immune system to recognize and destroy foreign invaders such as viruses. Adding so-called "methyl groups" on cytosines acts as on/off switches for genes. The authors say that these many faces of cytosine allow it to play various roles and give it true "wild card" status.
-end-
The authors acknowledge funding from the Rita Allen Foundation, the W.W. Smith Charitable Trust and the National Institutes of Health.

The American Chemical Society is a non-profit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society contact newsroom@acs.org.

American Chemical Society

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.