University of Southampton develops faster lasers to map jet engines

December 07, 2011

The University of Southampton's Optoelectronics Research Centre (ORC) is developing lasers, which will allow for a better understanding of the combustion process in jet engines and reduce emissions.

The ORC is working on the £2.7m research project called FLITES (Fibre-Laser Imaging of gas Turbine Exhaust Species). It is funded by the Engineering and Physical Sciences Research Council, led by University of Manchester, and aims to develop technology to reduce jet engine emissions.

"FLITES will allow us to map different chemical species and soot in the exhaust plume of aero engines," said Professor Johan Nilsson at the ORC. "This will create a better understanding of the combustion process in the engine and enable us to optimise it at lower cost - with the increasing interest for substitution of fossil fuels with bio-fuels in the aviation industry, this is particularly important. Currently the cost is too high and the data collected too limited for extensive evaluations of new bio-fuels in aero-engines."

FLITES aims to establish a world-leading capability to map several exhaust species from aeroplanes using tomographic imaging.

The ORC, the University of Manchester, the University of Strathclyde, and commercial partners including Rolls-Royce, Shell, Covesion, Fianium and OptoSci, will work on the four-year study, motivated by lower-cost engine evaluation and monitoring and reduced carbon dioxide emissions and pollution.

It is expected that the research project will enhance turbine-related research and development capacity in both academia and industry by opening up access to exhaust plume chemistry.

It will underpin a new phase of low-net-carbon development that is underway in aviation, based on bio-derived fuels, and which entails extensive research in turbine engineering, turbine combustion, and fuel product formulation.
-end-


University of Southampton

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.