Protein tied to cancer-drug resistance in mice

December 07, 2012

SAN ANTONIO, TX (December 7, 2012)--Blocking a specific protein renders tumors more vulnerable to treatment in mice, suggesting new therapies could eventually achieve the same in humans, according to new research from Fox Chase Cancer Center to be presented at the 2012 CTRC-AACR San Antonio Breast Cancer Symposium on Friday, December 7, 2012.

"Hopefully, with further testing, this research could one day result in a new therapy that blocks the effect of this protein and, in turn, boosts the effects of cancer drugs," says study author Elizabeth Hopper-Borge, PhD, Assistant Professor at Fox Chase.

The protein in question is a type of ATP-binding cassette drug efflux pumps, known more simply as ABC proteins. These proteins sit on the membranes of cells, where they act just like pumps--removing cancer drugs from the cell, thereby making them less effective. The body contains close to 50 such proteins, explains Hopper-Borge, but only 3 appear capable of evading the effects of cancer drugs, including common types used to treat lung, ovarian, and breast cancers.

The current research, supported by the National Institutes of Health, focuses on the protein ABCC10, which has not been studied in as much detail as some other ABC proteins, says Hopper-Borge. Last year, she and her colleagues found that mice lacking ABCC10 experienced physiological changes after taking a cancer drug, suggesting the drug was having an effect.

As part of the latest project, the authors performed a similar experiment in mice engineered to develop breast cancer. They found that, 21 days after exposure to a cancer drug, the tumors that lacked ABCC10 were much smaller than the tumors that still carried the protein. "This is probably the first time it's been shown that removing this protein helps sensitize tumors to cancer drugs," says Hopper-Borge.

Looking closely at the tumors, the researchers also found that cells that lacked ABCC10 grew faster. Strangely, this finding is encouraging, says Hopper-Borge, since chemotherapy targets proliferating cells--and so may explain why the drugs now act on the faster-growing cells that lack ABCC10.

The next step, she says, is to try removing ABCC10 in more mouse models of breast cancer, and determine how active the protein is in different types of the disease. Eventually, if blocking the protein appears to consistently boost the effects of cancer drugs, researchers can identify and begin testing inhibitors of ABCC10 as additional treatments for cancer.

"Although this research is promising, it's in its early stages," cautions Hopper-Borge. "Consequently, it's premature for patients to ask their doctors to test them for the presence of ABCC10, since knowing that can't yet affect their treatment. But these results suggest that may one day change."
-end-
Hopper-Borge's co-authors include Natalya Domanitskaya, Chelsy Paulose, Joely Jacobs, Katherine Foster and Brian Egelston at Fox Chase. Fox Chase Cancer Center, part of the Temple University Health System, is one of the leading cancer research and treatment centers in the United States. Founded in 1904 in Philadelphia as one of the nation's first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center's nursing program has received the Magnet status for excellence three consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach. For more information, visit Fox Chase's Web site at www.foxchase.org or call 1-888-FOX CHASE or (1-888-369-2427).

Fox Chase Cancer Center

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.