New research sheds light on mercury pollution in estuaries, food chain

December 07, 2015

HANOVER, N.H. - Two studies by Dartmouth researchers and their colleagues shed new light on mercury pollution in the waters of the northeastern United States.

The studies -- here and here -- appear in the journal Marine Chemistry. PDFs are available on request.

Mercury, which is transformed into methylmercury in water, is a global pollutant that damages human health. Most people are exposed to mercury by eating fish, particularly from open ocean and coastal fisheries. All 50 states have had fish consumption advisories pertaining to mercury. Estuaries act as a repository for methylmercury, storing toxic particulates in both the sediment and water column.

In the first paper, the researchers studied the production of methylmercury over several years in different environmental conditions in sediments of two sites in Great Bay Estuary, N.H. They found that differences in the type of mixing of the sediments (due to worms versus mixing by water currents) and in the kinds and amounts of microorganisms affect the amount of methylmercury in the sediments.

"The availability of methylmercury to fish in estuarine systems is dependent on the amount of methylmercury that is produced in sediments, and these concentrations are highly dependent on the chemical and physical conditions of the sediments," says co- author Dartmouth's Celia Chen, a research professor of biological sciences and a project leader in Dartmouth's Toxic Metals Superfund Research Program. "The activity of organisms burrowing in the mud and the amount of mixing due to currents and waves affect the amount of methylmercury produced and available to marine organisms. These factors vary greatly even within ecosystems."

In the second paper, the researchers studied methylmercury in sediments and the water column in coastal sites in the northeastern United States. They found there was no relationship between sediment methylmercury and water column methylmercury, which indicates the sediments aren't the only source of methylmercury to the water column. The findings suggest that upstream sources may be important, particularly in wetland dominated ecosystems, and that sediments aren't the only important source to coastal fish.

"Many earlier studies assumed that sediments were the most important source as this is the largest reservoir for methylmercury within an estuary," says co-author Robert Mason, professor of marine sciences at the University of Connecticut and co-investigator on this project. "But the transfer of methylmercury from the sediment to the water column is complex and is not strongly correlated to their net rate of formation of methylmercury."

"Our earlier studies show that water column concentrations are the most predictive of methylmercury concentrations in fish, and so the lack of a relationship to sediment is particularly important since contaminated sites are most often evaluated and remediated based on the mercury in sediments," Chen says.
-end-
Available to comment are Dartmouth Research Professor Celia Chen at Celia.Y.Chen@dartmouth.edu and UConn Professor Robert Mason at Robert.mason@uconn.edu.

The study included scientists from Dartmouth College, the University of Maine, the University of Connecticut and the National Aeronautics and Space Administration.

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://communications.dartmouth.edu/media/broadcast-studios

Dartmouth College

Related Mercury Articles from Brightsurf:

Mercury's 400 C heat may help it make its own ice
Despite Mercury's 400 C daytime heat, there is ice at its caps, and now a study shows how that Vulcan scorch probably helps the planet closest to the sun make some of that ice.

New potential cause of Minamata mercury poisoning identified
One of the world's most horrific environmental disasters--the 1950 and 60s mercury poisoning in Minamata, Japan--may have been caused by a previously unstudied form of mercury discharged directly from a chemical factory, research by the University of Saskatchewan (USask) has found.

New nanomaterial to replace mercury
Ultraviolet light is used to kill bacteria and viruses, but UV lamps contain toxic mercury.

Wildfire ash could trap mercury
In the summers of 2017 and 2018, heat waves and drought conditions spawned hundreds of wildfires in the western US and in November, two more devastating wildfires broke out in California, scorching thousands of acres of forest, destroying homes and even claiming lives.

Removing toxic mercury from contaminated water
Water which has been contaminated with mercury and other toxic heavy metals is a major cause of environmental damage and health problems worldwide.

Fish can detox too -- but not so well, when it comes to mercury
By examining the tissues at a subcellular level, the researchers discovered yelloweye rockfish were able to immobilize several potentially toxic elements within their liver tissues (cadmium, lead, and arsenic) thus preventing them from interacting with sensitive parts of the cell.

Chemists disproved the universal nature of the mercury test
The mercury test of catalysts that has been used and considered universal for 100 years, turned out to be ambiguous.

Mercury rising: Are the fish we eat toxic?
Canadian researchers say industrial sea fishing may be exposing people in coastal and island nations to excessively high levels of mercury.

New estimates of Mercury's thin, dense crust
Michael Sori, a planetary scientist at the University of Arizona, used careful mathematical calculations to determine the density of Mercury's crust, which is thinner than anyone thought.

Understanding Mercury's magnetic tail
Theoretical physicists used simulations to explain the unusual readings collected in 2009 by the Mercury Surface, Space Environment, Geochemistry, and Ranging mission.

Read More: Mercury News and Mercury Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.