Nav: Home

German Research Foundation approves collaborative research center on selective autophagy

December 07, 2015

The German Research Foundation (DFG) will be providing approximately EUR 11 million over the next four years to fund a new collaborative research center on autophagy. Scientists from the Mainz University Medical Center as well as from the Institute of Molecular Biology (IMB) are part of the research consortium. Autophagy is an important cellular process that is involved in energy production, cellular stress response, and immune reactions. The goal of the new research center is a better understanding of autophagy at the molecular and cellular level. The researchers trust that they will be able to impact autophagy processes in the future in order to treat various forms of cancer, neurodegenerative disorders, infectious diseases, and inflammatory reactions more effectively. The center will be managed under the aegis of Goethe University Frankfurt.

"This new research center, in which the University Medical Center of Johannes Gutenberg University Mainz is involved, demonstrates the enormous research potential of the universities in the Rhine-Main region. The collaboration underlines how pioneering work can be undertaken when outstanding scientists from the region work together to develop collaborative research projects," said Professor Ulrich Förstermann, Chief Scientific Officer of the Mainz University Medical Center.

Autophagy occurs in organisms as simple as yeast cells and as complex as human beings. It is through this process, for example, that protein aggregates are degraded that can cause severe damage in cells and can lead to cell death as it is observed in several neurodegenerative disorders. Even entire cellular organelles can be removed by autophagy when they do not function properly any longer and viruses or bacteria that invade cells can be neutralized. The components recovered in the process can then be reused by cells as basic material, which is why autophagy is also employed as a strategy for cell survival when the energy supply is low. Autophagy represents an extremely complex and precisely regulated process that depends on the coordination of many players. The degradation-prone substrate at first is specifically recognized and then enclosed by a membrane, which matures into a so-called autophagosome. This structure then fuses with larger cell organelles, the lysosomes that are filled with digestive enzymes and break the contents down to single building blocks.

"It has long been thought that autophagy represents an unspecific process. As it has become increasingly clear that the cells can target the process and that its disturbance is associated with an entire series of disorders, autophagy research has really taken off," explained Professor Christian Behl, Deputy Speaker of the CRC and Director of the Institute of Pathobiochemistry at the Mainz University Medical Center. "Many questions are still awaiting answers. We need to determine, for example, how exactly this process is regulated and modulated and how it is linked to other cellular mechanisms."

It is now known that autophagy is particularly dependent on the cellular context. By controlling various cellular components, it is able to prevent the formation of cancer cells. On the other hand, cancer cells make use of autophagy processes in order to survive the nutrient shortage associated with fast tumor growth. Less research has been done on the interplay of autophagy with other mechanisms, such as the intake of substrates by the invagination of the cell membrane (endocytosis), programmed cell death (apoptosis), and the ubiquitin system, which marks proteins for degradation by the proteasome.

Within the new collaborative research center, scientists are planning to investigate autophagy at the molecular, cellular, and model organism level. It is the first large-scale collaborative project on this subject to be undertaken in Germany and enables the Frankfurt- and Mainz-based scientists to strengthen their position in a highly competitive international field. For it, a broad setup across several disciplines is required and thus the network brings together structural biologists, biochemists, cellular biologists as well as clinicians. The results on molecular mechanisms will be directly assessed within model systems of human diseases.

In Mainz, in addition to the Institute of Pathobiochemistry at the Mainz University Medical Center the Institute of Molecular Biology (IMB) is involved. Partners in Frankfurt include various departments of Goethe University Frankfurt, e.g., Life Sciences, Biochemistry, Chemistry, Pharmaceutical Sciences, and Medicine, along with the Buchmann Institute for Molecular Life Sciences and the Georg-Speyer-Haus.
-end-


Johannes Gutenberg Universitaet Mainz

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".