MAO is a possible Alzheimer's disease biomarker

December 07, 2016

Alzheimer's disease affects more than 35 million people, a number that is expected to increase in the coming years. Currently, Alzheimer's diagnoses rely on clinical neuropathologic assessment of amyloid-β (Aβ) peptide aggregates (plaques) and neurofibrillary tangles. But in ACS Central Science, researchers reveal that an enzyme already implicated in a host of neural disorders could someday serve as a biomarker.

In the brains of patients with Alzheimer's, amyloid peptides aggregate to form oligomers and plaques that are thought to be responsible for the disease symptoms. It is difficult to monitor Aβ aggregation in living animals and patients, and current methods to track it in patient brains are costly, have low resolution or require radiation. Monoamine oxidase (MAO) is involved in many neurological disorders, such as depression. In addition, MAO is known to be associated with Alzheimer's, but studies establishing this relationship were only conducted in lab dishes and test tubes. To better understand MAO's association with Alzheimer's, and to determine whether MAO levels could be used as a biomarker for the disease, Inhee Mook-Jung, Kyo Han Ahn and colleagues took the next step and studied the protein in a mouse model of Alzheimer's.

The team devised an imaging tool to watch both Aβ and MAO at the same time in mice, and observed that as Aβ plaques increase (that is, as Alzheimer's progresses), MAO activity also increases. The team also showed that there are three distinct phases of MAO activity that change along with Alzheimer's progression: a slow initiation stage, a subsequent aggressive stage and finally a saturation stage. The authors say these results suggest that MAO could be helpful as a biomarker to someday diagnose and monitor the disease in patients, possibly using body fluids.
-end-
The authors acknowledge funding from the Ministry of Health & Welfare, the National Research Foundation of Korea and the University of California, San Diego.

The paper will be freely available on December 7th, at this link: http://pubs.acs.org/doi/full/10.1021/acscentsci.6b00309

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With nearly 157,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: TwitterFacebook

American Chemical Society

Related Enzyme Articles from Brightsurf:

Repairing the photosynthetic enzyme Rubisco
Researchers at the Max Planck Institute of Biochemistry decipher the molecular mechanism of Rubisco Activase

Oldest enzyme in cellular respiration isolated
Researchers from Goethe University have found what is perhaps the oldest enzyme in cellular respiration.

UQ researchers solve a 50-year-old enzyme mystery
Advanced herbicides and treatments for infection may result from the unravelling of a 50-year-old mystery by University of Queensland researchers.

Overactive enzyme causes hereditary hypertension
After more than 40 years, several teams at the MDC and ECRC have now made a breakthrough discovery with the help of two animal models: they have proven that an altered gene encoding the enzyme PDE3A causes an inherited form of high blood pressure.

Triggered by light, a novel way to switch on an enzyme
In living cells, enzymes drive biochemical metabolic processes. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics.

A 'corset' for the enzyme structure
The structure of enzymes determines how they control vital processes such as digestion or immune response.

Could inhibiting the DPP4 enzyme help treat coronavirus?
Researchers and clinicians are scrambling to find ways to combat COVID-19, including new therapeutics and eventually a vaccine.

Bacterial enzyme could become a new target for antibiotics
Scientists discover the structure of an enzyme, found in the human gut, that breaks down a component of collagen.

Chemists create new artificial enzyme
Rajeev Prabhakar, a computational chemist at the University of Miami, and his collaborators at the University of Michigan have created a novel, synthetic, three-stranded molecule that functions just like a natural metalloenzyme, or an enzyme that contains metal ions.

First artificial enzyme created with two non-biological groups
Scientists at the University of Groningen turned a non-enzymatic protein into a new, artificial enzyme by adding two abiological catalytic components: an unnatural amino acid and a catalytic copper complex.

Read More: Enzyme News and Enzyme Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.