Nav: Home

Critical zone, critical research

December 07, 2016

The Earth's critical zone isn't called critical for nothing. Known as our planet's outer skin, it is essential for human survival.

The critical zone extends from the top of the tallest tree down through the soil and into the water and rock beneath it. It stops at what's called the weathering zone -- or where soils first begin to develop. This zone allows crops to grow well and supports our buildings. It also allows for animals and microbes to live, and filters our water. These soil characteristics affect everything from the ground up.

Henry Lin of Pennsylvania State University follows the research on the critical zone and recently wrote a review on work in the area. Over the last five years there have been over 200 peer-reviewed articles published on topics related to the critical zone.

"The critical zone is where soil, rock, water, air, and living organisms all interact, which determines how many resources we are able to use," Lin says. "The critical zone provides various services to human society."

Lin explains the critical zone isn't just something physical. It is also a research approach. Scientists can study the critical zone as a whole to understand the Earth's layers across space and time. The approach also assists with long-term management of natural resources.

"The critical zone approach provides a framework for combining belowground and aboveground, non-living and living, and space and time in our ecosystems," he says. "To truly understand this zone, research from many areas must be mixed into one framework. It includes perspectives on time, depth, and coupling."

Each of these three concepts in the framework has specific impacts on the critical zone. For example, slow changes to soil over time lead to specific soil structures that control water movement. However, at the same time, each pulse of water moving through soil causes changes to the soil as well. How do these fast and slow processes affect each other?

When looking at depth, Lin points to an example of work being done using ground-penetrating radar to map what the critical zone looks like below what human eyes can see. Lastly, the coupled approach combines the study of the critical zone with its impact on natural resources and the benefits the ecosystem provides humans.

Lin says research in these three areas is important to understand the effects humans can have on the critical zone. By studying this zone, it is even possible to look at how it's changed over time and predict what will happen to it down the road.

Looking to that future, Lin calls for more work to be done. For example, he would like to see the global community work together to create a network of critical zone study and develop a library of databases about the zone.

"With our ongoing development, the critical zone is under ever-increasing pressures from humans, such as rapid growth of human and livestock population, land use increases, and global environmental changes," he says. "Possible negative effects include degraded soil health and water quality. It's important to continue closely studying this area."
-end-
Read Lin's review in Vadose Zone Journal. His research is supported in part by the National Science Foundation Hydrologic Sciences Program and the Critical Zone Observatory Program. Our thanks to Venkat Lakshmi for contributions to this story.

American Society of Agronomy

Related Water Articles:

Water, water, nowhere
Researchers at the University of Pittsburgh's Swanson School of Engineering have found that the unusual properties of graphane -- a two-dimensional polymer of carbon and hydrogen -- could form a type of anhydrous 'bucket brigade' that transports protons without the need for water, potentially leading to the development of more efficient hydrogen fuel cells for vehicles and other energy systems.
Advantage: Water
When water comes in for a landing on the common catalyst titanium oxide, it splits into hydroxyls just under half the time.
What's really in the water
Through a five-year, $500,000 CAREEER Award from the National Science Foundation, a civil and environmental engineering research group at the University of Pittsburgh's Swanson School of Engineering will be developing new DNA sequencing methods to directly measure viral loads in water and better indicate potential threats to human health.
Jumping water striders know how to avoid breaking of the water surface
When escaping from attacking predators, different water strider species adjust their jump performance to their mass and morphology in order to jump off the water as fast and soon as possible without breaking of the water surface.
Water, water -- the two types of liquid water
There are two types of liquid water, according to research carried out by an international scientific collaboration.
Just add water? New MRI technique shows what drinking water does to your appetite, stomach and brain
Stomach MRI images combined with functional fMRI of the brain activity have provided scientists new insight into how the brain listens to the stomach during eating.
UM researchers found shallow-water corals are not related to their deep-water counterparts
A new study led by scientists at the University of Miami Rosenstiel School of Marine and Atmospheric Science found that shallow-reef corals are more closely related to their shallow-water counterparts over a thousand miles away than they are to deep-water corals on the same reef.
Saline water better than soap and water for cleaning wounds, researchers find
Researchers found that very low water pressure was an acceptable, low-cost alternative for washing out open fractures, and that the reoperation rate was higher in the group that used soap.
UTA research predicting lake levels, moving water to yield better data for water providers
A University of Texas at Arlington environmental engineer is creating an integrated decision support tool for optimal operation of water supply systems that will allow water providers to make better decisions about when to turn on pumps to transfer water from one reservoir system to another and when to release water downstream from the reservoirs.
Surfing water molecules could hold the key to fast and controllable water transport
Scientists at UCL have identified a new and potentially faster way of moving molecules across the surfaces of certain materials.

Related Water Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...