Nav: Home

Dark matter may be smoother than expected

December 07, 2016

Hendrik Hildebrandt from the Argelander-Institut für Astronomie in Bonn, Germany and Massimo Viola from the Leiden Observatory in the Netherlands led a team of astronomers [1] from institutions around the world who processed images from the Kilo Degree Survey (KiDS), which was made with ESO's VLT Survey Telescope (VST) in Chile. For their analysis, they used images from the survey that covered five patches of the sky covering a total area of around 2200 times the size of the full Moon [2], and containing around 15 million galaxies.

By exploiting the exquisite image quality available to the VST at the Paranal site, and using innovative computer software, the team were able to carry out one of the most precise measurements ever made of an effect known as cosmic shear. This is a subtle variant of weak gravitational lensing, in which the light emitted from distant galaxies is slightly warped by the gravitational effect of large amounts of matter, such as galaxy clusters.

In cosmic shear, it is not galaxy clusters but large-scale structures in the Universe that warp the light, which produces an even smaller effect. Very wide and deep surveys, such as KiDS, are needed to ensure that the very weak cosmic shear signal is strong enough to be measured and can be used by astronomers to map the distribution of gravitating matter. This study takes in the largest total area of the sky to ever be mapped with this technique so far.

Intriguingly, the results of their analysis appear to be inconsistent with deductions from the results of the European Space Agency's Planck satellite, the leading space mission probing the fundamental properties of the Universe. In particular, the KiDS team's measurement of how clumpy matter is throughout the Universe -- a key cosmological parameter -- is significantly lower than the value derived from the Planck data [3].

Massimo Viola explains: "This latest result indicates that dark matter in the cosmic web, which accounts for about one-quarter of the content of the Universe, is less clumpy than we previously believed."

Dark matter remains elusive to detection, its presence only inferred from its gravitational effects. Studies like these are the best current way to determine the shape, scale and distribution of this invisible material.

The surprise result of this study also has implications for our wider understanding of the Universe, and how it has evolved during its almost 14-billion-year history. Such an apparent disagreement with previously established results from Planck means that astronomers may now have to reformulate their understanding of some fundamental aspects of the development of the Universe.

Hendrik Hildebrandt comments: "Our findings will help to refine our theoretical models of how the Universe has grown from its inception up to the present day."

The KiDS analysis of data from the VST is an important step but future telescopes are expected to take even wider and deeper surveys of the sky.

The co-leader of the study, Catherine Heymans of the University of Edinburgh in the UK adds: "Unravelling what has happened since the Big Bang is a complex challenge, but by continuing to study the distant skies, we can build a picture of how our modern Universe has evolved."

"We see an intriguing discrepancy with Planck cosmology at the moment. Future missions such as the Euclid satellite and the Large Synoptic Survey Telescope will allow us to repeat these measurements and better understand what the Universe is really telling us," concludes Konrad Kuijken (Leiden Observatory, the Netherlands), who is principal investigator of the KiDS survey.
-end-
Notes

[1] The international KiDS team (http://kids.strw.leidenuniv.nl/team.php) of researchers includes scientists from Germany, the Netherlands, the UK, Australia, Italy, Malta and Canada.

[2] This corresponds to about 450 square degrees, or a little more than 1% of the entire sky.

[3] The parameter measured is called S8. Its value is a combination of the size of density fluctuations in, and the average density of, a section of the Universe. Large fluctuations in lower density parts of the Universe have an effect similar to that of smaller amplitude fluctuations in denser regions and the two cannot be distinguished by observations of weak lensing. The 8 refers to a cell size of 8 megaparsecs, which is used by convention in such studies.

More information

This research was presented in the paper entitled "KiDS-450: Cosmological parameter constraints from tomographic weak gravitational lensing", by H. Hildebrandt et al., to appear in Monthly Notices of the Royal Astronomical Society.

The team is composed of H. Hildebrandt (Argelander-Institut für Astronomie, Bonn, Germany), M. Viola (Leiden Observatory, Leiden University, Leiden, the Netherlands), C. Heymans (Institute for Astronomy, University of Edinburgh, Edinburgh, UK), S. Joudaki (Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Hawthorn, Australia), K. Kuijken (Leiden Observatory, Leiden University, Leiden, the Netherlands), C. Blake (Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Hawthorn, Australia), T. Erben (Argelander-Institut für Astronomie, Bonn, Germany), B. Joachimi (University College London, London, UK), D Klaes (Argelander-Institut für Astronomie, Bonn, Germany), L. Miller (Department of Physics, University of Oxford, Oxford, UK), C.B. Morrison (Argelander-Institut für Astronomie, Bonn, Germany), R. Nakajima (Argelander-Institut für Astronomie, Bonn, Germany), G. Verdoes Kleijn (Kapteyn Astronomical Institute, University of Groningen, Groningen, the Netherlands), A. Amon (Institute for Astronomy, University of Edinburgh, Edinburgh, UK), A. Choi (Institute for Astronomy, University of Edinburgh, Edinburgh, UK), G. Covone (Department of Physics, University of Napoli Federico II, Napoli, Italy), J.T.A. de Jong (Leiden Observatory, Leiden University, Leiden, the Netherlands), A. Dvornik (Leiden Observatory, Leiden University, Leiden, the Netherlands), I. Fenech Conti (Institute of Space Sciences and Astronomy (ISSA), University of Malta, Msida, Malta; Department of Physics, University of Malta, Msida, Malta), A. Grado (INAF - Osservatorio Astronomico di Capodimonte, Napoli, Italy), J. Harnois-Déraps (Institute for Astronomy, University of Edinburgh, Edinburgh, UK; Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada), R. Herbonnet (Leiden Observatory, Leiden University, Leiden, the Netherlands), H. Hoekstra (Leiden Observatory, Leiden University, Leiden, the Netherlands), F. Köhlinger (Leiden Observatory, Leiden University, Leiden, the Netherlands), J. McFarland (Kapteyn Astronomical Institute, University of Groningen, Groningen, the Netherlands), A. Mead (Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada), J. Merten (Department of Physics, University of Oxford, Oxford, UK), N. Napolitano (INAF - Osservatorio Astronomico di Capodimonte, Napoli, Italy), J.A. Peacock (Institute for Astronomy, University of Edinburgh, Edinburgh, UK), M. Radovich (INAF - Osservatorio Astronomico di Padova, Padova, Italy), P. Schneider (Argelander-Institut für Astronomie, Bonn, Germany), P. Simon (Argelander-Institut für Astronomie, Bonn, Germany), E.A. Valentijn (Kapteyn Astronomical Institute, University of Groningen, Groningen, the Netherlands), J.L. van den Busch (Argelander-Institut für Astronomie, Bonn, Germany), E. van Uitert (University College London, London, UK) and L. van Waerbeke (Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

Links

Contacts

Hendrik Hildebrandt
Head of Emmy Noether-Research Group
Bonn, Germany
Tel: +49 228 73 1772
Email: hendrik@astro.uni-bonn.de

Massimo Viola
Leiden Observatory
Leiden, The Netherlands
Tel: +31 (0)71 527 8442
Email: viola@strw.leidenuniv.nl

Catherine Heymans
Institute for Astronomy, University of Edinburgh
Edinburgh, United Kingdom
Tel: +44 131 668 8301
Email: heymans@roe.ac.uk

Konrad Kuijken
Leiden Observatory
Leiden, The Netherlands
Tel: +31 715275848
Cell: +31 628956539
Email: kuijken@strw.leidenuniv.nl

Richard Hook
ESO Public Information Officer
Garching bei Munchen, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

ESO

Related Dark Matter Articles:

Does dark matter annihilate quicker in the Milky Way?
Researchers at the Tata Institute of Fundamental Research in Mumbai have proposed a theory that predicts how dark matter may be annihilating much more rapidly in the Milky Way, than in smaller or larger galaxies and the early Universe.
Origin of Milky Way's hypothetical dark matter signal may not be so dark
A mysterious gamma-ray glow at the center of the Milky Way is most likely caused by pulsars.
A new look at the nature of dark matter
A new study suggests that the gravitational waves detected by the LIGO experiment must have come from black holes generated during the collapse of stars, and not in the earliest phases of the Universe.
Dark matter may be smoother than expected
Analysis of a giant new galaxy survey, made with ESO's VLT Survey Telescope in Chile, suggests that dark matter may be less dense and more smoothly distributed throughout space than previously thought.
Supercomputer comes up with a profile of dark matter
In the search for the mysterious dark matter, physicists have used elaborate computer calculations to come up with an outline of the particles of this unknown form of matter.
Mapping the 'dark matter' of human DNA
Researchers from ERIBA, Radboud UMC, XJTU, Saarland University, CWI and UMC Utrecht have made a big step towards a better understanding of the human genome.
Reconciling dwarf galaxies with dark matter
Dwarf galaxies are enigmas wrapped in riddles. Although they are the smallest galaxies, they represent some of the biggest mysteries about our universe.
Did gravitational wave detector find dark matter?
When an astronomical observatory detected two black holes colliding in deep space, scientists celebrated confirmation of Einstein's prediction of gravitational waves.
Dark matter does not contain certain axion-like particles
Researchers at Stockholm University are getting closer to corner light dark-matter particle models.
SDU researchers present a new model for what dark matter might be
There are indications that we might never see the universe's mysterious dark matter.

Related Dark Matter Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".