Study shows blood products unaffected by drone trips

December 07, 2016

In what is believed to be the first proof-of-concept study of its kind, Johns Hopkins researchers have determined that large bags of blood products, such as those transfused into patients every day, can maintain temperature and cellular integrity while transported by drones.

In a report about the findings, published ahead of print in the journal Transfusion in November, the investigators say the findings add to evidence that remotely piloted drones are an effective, safe and timely way to quickly get blood products to remote accident or natural catastrophe sites, or other time-sensitive destinations.

"For rural areas that lack access to nearby clinics, or that may lack the infrastructure for collecting blood products or transporting them on their own, drones can provide that access," says Timothy Amukele, M.D., Ph.D., assistant professor of pathology at the Johns Hopkins University School of Medicine and the paper's first author.

Drones also can help in urban centers like Baltimore City to improve distribution of blood products and the quality of care, he says.

The Johns Hopkins team previously studied the impact of drone transportation on the chemical, hematological and microbial makeup of drone-flown blood samples and found that none were negatively affected. The new study examines the effects of drone transportation on larger amounts of blood products used for transfusion, which have significantly more complex handling, transport and storage requirements compared to blood samples for laboratory testing.

For the study, the team purchased six units of red blood cells, six units of platelets and six units of unthawed plasma from the American Red Cross, and then packed the units into a 5-quart cooler two to three units at a time, in keeping with weight restrictions for the transport drone. The cooler was then attached to a commercial S900-model drone. This particular drone model comes equipped with a camera mount, which the team removed and replaced with the cooler.

For each test, the drone was flown by remote control a distance of approximately 13 to 20 kilometers (8 to 12 miles) while 100 meters (328 feet) above ground. This flight took up to 26.5 minutes. The team designed the test to maintain temperature for the red blood cells, platelets and plasma units. They used wet ice, pre-calibrated thermal packs and dry ice for each type of blood product, respectively. Temperature monitoring was constant, keeping with transport and storage requirements for blood components. The team conducted the tests in an unpopulated area, and a certified, ground-based pilot flew the drone.

Following flight, all samples were transported to The Johns Hopkins Hospital, where Amukele's team used the institution's laboratories to centrifuge the units of red blood cells and check them for red blood cell damage. They checked the platelets for changes in pH as well as the number of platelets and the plasma units for evidence of air bubbles, which would indicate thawing.

The team plans further and larger studies in the U.S. and overseas, and hopes to test methods of active cooling, such as programming a cooler to maintain a specific temperature.

"My vision is that in the future, when a first responder arrives to the scene of an accident, he or she can test the victim's blood type right on the spot and send for a drone to bring the correct blood product," says Amukele.
-end-
Other authors on this study include Paul M. Ness, Aaron A.R. Tobian, Joan Boyd and Jeff Street of The Johns Hopkins Hospital.

Funding for this study was provided by Peter Kovler of the Blum-Kovler Foundation.

Johns Hopkins Medicine

Related Red Blood Cells Articles from Brightsurf:

SMART researchers develop fast and efficient method to produce red blood cells
Researchers from Singapore-MIT developed a faster and more efficient way to manufacture red blood cells that cuts down on cell culture time by half.

Synthetic red blood cells mimic natural ones, and have new abilities
Scientists have tried to develop synthetic red blood cells that mimic the favorable properties of natural ones, such as flexibility, oxygen transport and long circulation times.

Exeter student leads research concluding that small red blood cells could indicate cancer
Having abnormally small red blood cells - a condition known as microcytosis - could indicate cancer, according to new research led by a University of Exeter student working with a world-leading team.

Physicists design 'super-human' red blood cells to deliver drugs to specific targets
A team of physicists from McMaster University has developed a process to modify red blood cells so they can be used to distribute drugs throughout the body, which could specifically target infections or treat catastrophic diseases such as cancer or Alzheimer's.

Blood transfusions: Fresh red blood cells no better than older ones
Findings from the ABC-PICU study on critically ill children may alter policies at hospitals where fresh red cells are preferentially used.

Fresh red blood cell transfusions do not help critically ill children more than older cells
Researchers have found that transfusions using fresh red blood cells -- cells that have spent seven days or less in storage -- are no more beneficial than older red blood cells in reducing the risk of organ failure or death in critically ill children.

Red blood cell donor pregnancy history not tied to mortality after transfusion
A new study has found that the sex or pregnancy history of red blood cell donors does not influence the risk of death among patients who receive their blood.

How sickled red blood cells stick to blood vessels
An MIT study describes how sickled red blood cells get stuck in tiny blood vessels of patients with sickle-cell disease.

Novel gene in red blood cells may help adult newts regenerate limbs
Adult newts can repeatedly regenerate body parts. Researchers from Japan, including the University of Tsukuba, and the University of Daytona, have identified Newtic1, a gene that is expressed in clumps of red blood cells in the circulating blood.

Healthy red blood cells owe their shape to muscle-like structures
The findings could shed light on sickle cell diseases and other disorders where red blood cells are deformed.

Read More: Red Blood Cells News and Red Blood Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.