Nav: Home

Big data approach to water quality applied at shale drilling sites

December 07, 2016

A computer program is diving deep into water quality data from Pennsylvania, helping scientists detect potential environmental impacts of Marcellus Shale gas drilling.

The work, supported by a new $1 million grant from the National Science Foundation, pairs a cross-disciplinary team of Penn State computer scientists and geoscientists studying methane concentrations in the state's streams, rivers and private water wells.

"We want to take a data-driven approach to assess the impact of shale gas development," said Zhenhui "Jessie" Li, assistant professor of information sciences and technology, Penn State, and co-principal investigator on the project. "We are using data-mining techniques and learning computer models to look at how methane concentration correlates with other factors, like distance from unconventional shale gas wells and geological features such as faults."

Methane occurs naturally in waterways, but may also be released by unconventional drilling, or fracking, associated with natural gas development. While environmental impacts from shale drilling appear to be rare compared to the number of drilled wells, the testing will give scientists a better idea of how and why they do occur.

Penn State geoscientists have studied methane concentrations around shale gas drilling for years and have collected large datasets from samples taken by researchers, environmental groups and government agencies. However, sifting through big data is labor intensive, and complex patterns that might reveal potential problems can be difficult for humans to spot.

"It's always been frustrating to me because we get these water datasets that are sort of here, there and everywhere, and you can't put them together into a scientific explanation," said Susan Brantley, distinguished professor of geosciences and director of the Earth and Environmental Systems Institute, Penn State, and principal investigator on the project. "It's like a jigsaw puzzle with a lot of pieces missing. The story is still there, but you can't see it as a human being. I think it's possible the computer techniques that Jessie has can help us pull that story out and fill in some of the missing pieces." Li uses computer models and data mining techniques to analyze the data for hot spots, areas where methane concentrations are higher than expected and may not be readily explained by natural causes. Geoscientists can then focus on those narrow areas for further study.

Using the techniques, Li and her team found methane levels tend to be higher around fault lines. But the models can go further, analyzing the impacts of different shale gas wells and older conventional gas and oil wells around the faults. "The combination of these two features may cause the methane to be slightly higher in some areas," Li said. "It could be a very complicated rule involving multiple factors together. So the way the machine-learning model works is from this massive data, we can learn these kinds of complicated rules."

The work could lead to a better understanding of how fracking, orphaned and abandoned oil and gas wells, and other factors occasionally impact the environment. As part of the project, researchers will train citizen scientists to collect additional water samples and will host workshops aimed to share the data with the public and foster dialogue among diverse stakeholders.

"I think it's going to be helpful for people in Pennsylvania," Brantley said. "I think what we've found is if there are problems, they are relatively infrequent. But we are also starting to look at other issues like lead or arsenic in drinking water. We can see the impact of coal mine- and acid mine-drainage. We can look at all different kinds of water resources, and we can work with people in Pennsylvania to teach them about it."

The researchers said the project also provides important, cross-disciplinary opportunities for students from the Colleges of Earth and Mineral Sciences and IST. Computer science students have had the rare chance to go into the field, while geosciences students have had the opportunity to look at their data in way that was previously unavailable to them. "I'm just a person who really likes interdisciplinary work, because I want to make real-world impacts," Li said. "I feel like data-mining researchers should go in this direction. There are a lot of interesting real-world problems we can help solve."
-end-
Funding for the project comes from the NSF Interdisciplinary Research and Education (INSPIRE) program, which seeks to support bold, interdisciplinary projects in science, engineering and education. The United State Geological Survey and the Pennsylvania Department of Environmental Protection provided data used in this project.

Penn State

Related Methane Articles:

Measuring methane from space
A group of researchers from Alaska and Germany is reporting for the first time on remote sensing methods that can observe thousands of lakes and thus allow more precise estimates of methane emissions.
New 3D view of methane tracks sources
NASA's new 3-dimensional portrait of methane concentrations shows the world's second largest contributor to greenhouse warming.
Show me the methane
Though not as prevalent in the atmosphere as carbon dioxide, methane is a far more potent greenhouse gas.
Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.
Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.
Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.
Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.
Methane-consuming bacteria could be the future of fuel
Northwestern University researchers have found that the enzyme responsible for the methane-methanol conversion in methanotrophic bacteria catalyzes the reaction at a site that contains just one copper ion.
New measurement method for radioactive methane
The method developed by Juho Karhu in his PhD thesis work is a first step towards creating a precise measuring device.
New key players in the methane cycle
Methane is not only a powerful greenhouse gas, but also a source of energy.
More Methane News and Methane Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.