Nav: Home

Common insecticides are riskier than thought to predatory insects

December 07, 2016

Neonicotinoids -- the most widely used class of insecticides -- significantly reduce populations of predatory insects when used as seed coatings, according to researchers at Penn State. The team's research challenges the previously held belief that neonicotinoid seed coatings have little to no effect on predatory insect populations. In fact, the work suggests that neonicotinoids reduce populations of insect predators as much as broadcast applications of commonly used pyrethroid insecticides.

"Predatory insects contribute billions of dollars a year to agriculture through the elimination of crop pest insects," said Margaret Douglas, postdoctoral researcher in entomology, Penn State. "We have found that neonicotinoid seed coatings reduce populations of these natural enemies 10 to 20 percent."

According to John Tooker, associate professor of entomology, Penn State, the use of neonicotinoids has risen dramatically in recent years, especially for large-acreage crop species like corn, soybeans and cotton. The insecticide is most often applied to seeds as a prophylactic coating. When the seeds are planted, the insecticide enters the soil where some of it is taken up by plant roots. The chemical then runs systemically through the plant, protecting young seedlings from insect pests.

"Applying insecticides to seeds rather than broadcasting them across a field was thought to reduce unwanted effects on natural enemies," said Douglas. "But we found that seeds treated with neonicotinoid insecticides reduced populations of natural enemies by 10 to 20 percent in North American and European farming systems. Surprisingly, this effect was about the same as that associated with broadcast applications of pyrethroids."

The team's research appeared today in the online journal PeerJ.

The team used a statistical method, called meta-analysis, to combine the results of more than 1,000 observations from 20 field studies across North America and Europe that tested the effects of seed-applied neonicotinoids on predatory insects. "Unfortunately, the available literature is difficult to interpret," said Tooker. "Some studies show little influence of neonicotinoids presented as seed treatments on arthropod predators that are common in crop fields, whereas others show a strong influence of these seed treatments. By using a meta-analysis approach, we were able to combine the results of many studies to quantitatively reveal the overall influence of neonicotinoids on predator populations."

Not only did the researchers find that neonicotinoid seed coatings significantly reduced natural enemy populations, they also found that the insecticide acted more strongly on insect predators than on spiders. In other words, spiders appeared to be less susceptible to neonicotinoids than insects, which is consistent with previous research.

"This result suggests that neonicotinoids are reducing populations of natural enemies at least partly through their toxic effects rather than simply by reducing the availability of their crop pest foods," said Douglas. "After all, insects are more susceptible to these toxins than spiders, whereas the two groups should be similarly affected by a lack of food." The researchers note that their results may help farmers and pest management professionals better weigh the costs and benefits of neonicotinoid seed treatments versus alternatives.

"Several governments have restricted the use of neonicotinoids out of concern for their possible effects on pollinators," said Douglas. "But this raises the questions, 'What will farmers do without these products? If they switch to broadcast applications of pyrethroids, will those products be better or worse for predatory insects?' While our results do not speak to the pollinator issue, they do suggest that predatory insects are affected similarly by seed-applied neonicotinoids and broadcast pyrethroids."

The answer to the problem, noted Tooker, lies in the application of integrated pest management (IPM), a strategy that uses a combination of techniques -- which may or may not include the targeted use of insecticides -- to control pests, rather than universally deploying prophylactic tactics like insecticidal seed coatings.

"Substantial research exists supporting the value of IPM for pest control," he said. "It is the best chance we have of conserving beneficial insect species while maintaining productivity in our agricultural systems."
-end-


Penn State

Related Insecticides Articles:

Some bed bugs show early signs of resistance to 2 common insecticides
Pest management professionals battling the ongoing resurgence of bed bugs are wise to employ a well-rounded set of measures that reduces reliance on chemical control, as new research shows the early signs of resistance developing among bed bugs to two commonly used insecticides, chlorfenapyr and bifenthrin.
Exposure to certain insecticides linked to childhood behavioral difficulties
Exposure to a particular group of chemicals widely used in pest control for people, pets, and crops, may be linked to behavioral difficulties in 6-year-olds, suggests research published online in Occupational & Environmental Medicine.
Study examines pesticides' impact on wood frogs
A new study looks at how neonicotinoid pesticides affect wood frogs, which use surface waters in agricultural environments to breed and reproduce.
Scaled-up malaria control efforts breed insecticide resistance in mosquitoes
A genetic analysis of mosquito populations in Africa shows that recent successes in controlling malaria through treated bednets has led to widespread insecticide resistance in mosquitoes, according to a study led by Charles Wondji of the Liverpool School of Tropical Medicine, with Kayla Barnes, Gareth Weedall and colleagues in PLOS Genetics.
Insecticides mimic melatonin, creating higher risk for diabetes
Synthetic chemicals commonly found in insecticides and garden products bind to the receptors that govern our biological clocks, University at Buffalo researchers have found.
Common insecticides are riskier than thought to predatory insects
Neonicotinoids -- the most widely used class of insecticides -- significantly reduce populations of predatory insects when used as seed coatings, according to researchers at Penn State.
Take advantage of evolution in malaria fight, scientists say
Scientists could harness the power of evolution to stop mosquitoes spreading malaria, according to new research by the University of Exeter and the University of California, Berkeley.
Driving mosquito evolution to fight malaria
UC Berkeley and Exeter University researchers propose a novel strategy to keep malarial mosquitoes out of people's homes: combine a repellent with an insecticide.
Sulfoxaflor found to be less harmful to insect predators than broad-spectrum insecticides
A new study appearing in the Journal of Economic Entomology has found that the selective insecticide sulfoxaflor is just as effective at controlling soybean aphids (Aphis glycines) as broad-spectrum insecticides, without causing significant harm to some beneficial predators of the aphid.
New study: Neonicotinoid insecticides linked to wild bee decline across England
Exposure to neonicotinoid seed treated oilseed rape crops has been linked to long-term population decline of wild bee species across the English countryside, according to research published today in Nature Communications.

Related Insecticides Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"