Nav: Home

'Pulling' bacteria out of blood

December 07, 2016

Blood poisoning is still fatal in more than 50% of cases, but can be cured if treated at an early stage. The highest priority is therefore to act quickly. For this reason, doctors usually administer antibiotics even in the event of a suspicion of blood poisoning, without first ascertaining whether it is actually a bacterial sepsis, which in turn greatly increases the risk of resistance to antibiotics developing. It is therefore important to identify and develop a fast and effective therapy, if possible without the need to use antibiotics.

An antibody for everything

Empa researcher Inge Herrmann and her team are developing a solution in collaboration with modelling expert Marco Lattuada from the Adolphe Merkle Institute and doctors from the Harvard Medical School. The idea for the treatment is the magnetic purification of blood. The principle is, at least in theory, quite straightforward. Iron particles are coated with an antibody that detects and binds the harmful bacteria in the blood. As soon as the iron particles are attached to the bacteria, they are removed from the blood magnetically.

However, there is (still) a small catch: So far, it has only been possible to coat the iron particles with antibodies that recognise one type of bacteria - but many different types of bacteria may be involved, depending on the species causing the blood poisoning. Using blood analysis, doctors must therefore first determine which bacteria is causing the poisoning before the appropriate antibodies can be used. "This blood analysis is time-consuming and time plays a vital role in the treatment of blood poisoning," explains Herrmann. This is also the reason for magnetic dialysis rarely having been used to date.

But a team at the Harvard Medical School led by Gerald Pier has now developed an antibody that can bind almost all the bacteria that can trigger blood poisoning - so if there is a suspicion of sepsis, the magnetic treatment could be started immediately, regardless of which pathogen is in the blood. This "allrounder" antibody to succeed in isolating pathogenic bacteria - similar to using dialysis.

How harmful are the iron particles?


The method is not yet sufficiently mature to be used on patients. In a next step, Herrmann wants to carry out tests with various other germs and find out whether the Harvard antibody can actually bind additional bacteria to itself. The nature of the iron particles is also not to be underestimated. It may be the case that some particles remain in the blood after the magnetic extraction has been carried out. The requirements for these carriers are thus clear: they must not harm the human body. But Herrmann's team already has a solution ready in this regard. The tiny iron particles are assembled into larger clusters and are thus more responsive to the magnet. In addition, the researchers have been able to demonstrate, in an in vitro simulation, that the iron particles are broken down completely after only five days. Further experiments still to come

In the future, it should therefore no longer be strictly necessary to administer antibiotics as soon as there is a suspicion of sepsis. Blood will be taken from the patient for analysis, and the patient connected to a dialysis machine to cleanse the blood, no matter what bacteria are in it. As soon as the doctors have the detailed blood values, an antibiotic therapy tailored to the pathogen can be introduced, if necessary.

This idea is currently just a future ambition, as there are still numerous issues that need to be clarified. Firstly, it is imperative that this method is used in the initial stage of sepsis, when the damage has not yet spread from the blood to the organs or bodily functions, and there is also the issue of how well this treatment will work in unstable patients or patients with pre-existing conditions. But Herrmann and her team are optimistic - and also a step closer to achieving a new and more gentle treatment for sepsis.
-end-


Swiss Federal Laboratories for Materials Science and Technology (EMPA)

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

The Bacteria Book: The Big World of Really Tiny Microbes
by Steve Mould (Author)

Bacteria: Staph, Strep, Clostridium, and Other Bacteria (Class of Their Own (Paperback))
by Judy Wearing (Author)

A Field Guide to Bacteria (Comstock Book)
by Betsey Dexter Dyer (Author)

Superbugs: An Arms Race against Bacteria
by William Hall (Author), Anthony McDonnell (Author), Jim O'Neill Chair of a formal Review on Antimicrobial Resistance (AMR) (Author)

Bacteria: A Very Short Introduction (Very Short Introductions)
by Sebastian G.B. Amyes (Author)

I Contain Multitudes: The Microbes Within Us and a Grander View of Life
by Ed Yong (Author)

From Bacteria to Bach and Back: The Evolution of Minds
by Daniel C. Dennett (Author)

The Surprising World of Bacteria with Max Axiom, Super Scientist (Graphic Science)
by Agnieszka Biskup (Author), Anne Timmons (Author), Matt Webb (Author), Krista Ward (Author)

Molecular Genetics of Bacteria, 4th Edition
by Larry Snyder (Author), Joseph E. Peters (Author), Tina M. Henkin (Author), Wendy Champness (Author)

Are All Bacteria Dangerous? Biology Book for Kids | Children's Biology Books
by Baby Professor (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Where Joy Hides
When we focus so much on achievement and success, it's easy to lose sight of joy. This hour, TED speakers search for joy in unexpected places, and explain why it's crucial to a fulfilling life. Speakers include inventor Simone Giertz, designer Ingrid Fetell Lee, journalist David Baron, and musician Meklit Hadero.
Now Playing: Science for the People

#499 Technology, Work and The Future (Rebroadcast)
This week, we're thinking about how rapidly advancing technology will change our future, our work, and our well-being. We speak to Richard and Daniel Susskind about their book "The Future of Professions: How Technology Will Transform the Work of Human Experts" about the impacts technology may have on professional work. And Nicholas Agar comes on to talk about his book "The Sceptical Optimist" and the ways new technologies will affect our perceptions and well-being.