Life under the surface in live broadcast

December 07, 2017

Researchers at Lund University in Sweden have invented new systems to study the life of microorganisms in the ground. Without any digging, the researchers are able use microchips to see and analyse an invisible world that is filled with more species than any other ecosystem.

Under our feet there is life and movement. In a spoonful of soil there are more microorganisms (fungi and bacteria) than there are people on Earth. At the same time, it is also an invisible world that is often difficult and impenetrable for researchers.

"Our soil chips could revolutionise how we study microbiological processes in the ground. Finally, we can follow what actually happens down the ground under a microscope in real-time", says Edith Hammer, associate senior lecturer the Department of Biology in Lund.

For a long time, experiments using petri dishes and real soil have been the traditional way of exploring life in the ground. What the researchers now have done is to create models of soil structures and ecosystems in microchips. With these, the researchers can study the life that takes place in the labyrinth systems of the soil - systems which they are now able to build on the same scale as the microorganisms themselves.

Using a technology called microfluidics, the researchers can produce relatively realistic soil models. The models are made of a silicone polymer and simulate the structure of the soil with components of organic and inorganic material, mazelike passageways, water and unevenly distributed nutrients on which the microorganisms feed.

"Our systems are transparent - this is probably what fascinates people the most. It allows us to look directly at all processes and behaviours in the ground. We see how the microorganisms move, search for food, choose where they are going and how they compete with each other, but also cooperate", says Edith Hammer.

"The microorganisms are ecosystem engineers. We see how they change their environment by creating or blocking passageways with their cells. The bacteria in the soil tunnel system have to fight hard against the forces of water to move at all", she says.

The researchers are convinced that the method will increase knowledge of the structures in the soil and the importance of the organisms living there. Eventually, this will lead to better recommendations for how to use soil in a sustainable way that preserves the ground's functions.

The new microchips were developed in collaboration between biologists and engineers at the faculties of science and engineering in Lund, together with their colleagues in Amsterdam.
-end-


Lund University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.