Nav: Home

Inhibiting TOR boosts regenerative potential of adult tissues

December 07, 2017

Adult stem cells replenish dying cells and regenerate damaged tissues throughout our lifetime. We lose many of those stem cells, along with their regenerative capacity, as we age. Working in flies and mice, researchers at the Buck Institute and elsewhere discovered that TOR, a nutrient sensing pathway which is central to the aging process, drives the loss of adult stem cells. Treating mice with the TOR-inhibitor rapamycin prevented this loss and could reverse age-related loss of stem cells in mouse trachea. The research is published in Cell Stem Cell.

In most of our tissues, adult stem cells hang out in a quiet state - ready to be activated in case of infection or injury. In response to such injury, however, stem cells have to be able to rapidly divide, to generate daughter cells that differentiate into cells that repair the tissue. This division has to be "asymmetric", meaning that only one of the two cells generated during the stem cell division goes on to differentiate, while the other cell remains a stem cell.

Buck professor and senior author Heinrich Jasper, PhD, says previous research showed that TOR needs to be maintained at a low level in order to preserve stem cells in a quiet state and prevent their differentiation. But in this study, researchers discovered that TOR signaling becomes activated in many stem cell types when they are engaged in a regenerative response. Jasper, who is now a staff scientist at Genentech, says this activation is important for rapid tissue repair, but at the same time it also increases the probability that stem cells will differentiate, thus losing their stem cell status. Jasper says this loss - in this case in the fly intestine, mouse muscle and mouse trachea - is particularly prevalent when the tissue is under heavy or chronic pressure to regenerate, which occurs in response to infections or other trauma to the tissue. During aging, Jasper says that repeated or chronic activation of TOR signaling contributes to the gradual loss of stem cells. Accordingly, by performing genetic or pharmacological interventions to limit TOR activity chronically, the researchers were able to prevent or reverse stem cell loss in tracheae and muscle of aging mice.

"It's all about maintaining a balance between stem cell renewal and differentiation," said Jasper. "It's easy to see how a loss of adult stem cells might accrue over a lifetime and accelerate with aging. We are excited to have a means of rescuing stem cells, boosting their ability to maintain healthy tissue."

The work at the Buck Institute, led by postdoctoral fellow Samantha Haller, PhD, began in the intestines of fruit flies and moved to mouse trachea - tissues that share many similarities. Experiments involving mouse muscle were done at Stanford University. At the Buck Institute, mice were put on differing regimens of rapamycin treatment starting at different stages of life. Jasper says rapamycin was able to rescue stem cells even when given to mice starting at 15 months of age - the human equivalent of 50 years of age. "In every case we saw a decline in the number of stem cells, and rapamycin would bring it back." Whether this recovery of tissue stem cell numbers is due to a replenishment of the stem cell pool from more differentiated cells, or due to an increase in "asymmetric" stem cell divisions that allow one stem cell to generate two new ones, remains to be answered, he said.

Jasper says TOR can be regulated by a number of stimuli, and researchers are now attempting to better understand how the activity of this signaling pathway is controlled in stem cells. "Is there a chronic increase in TOR over a lifetime, or is activation stronger in aging animals? What happens downstream of TOR?" Jasper says researchers at the Buck are also testing homologues of rapamycin that are more specifically aimed at TOR Complex 1 - a key complex containing TOR that regulates cell growth and metabolism in all complex organisms.
-end-
Citation: mTORC1 activation during repeated regeneration impairs somatic stem cell maintenance
DOI: 10.1016/j.stem.2017.11.008

Other Buck researchers involved in the study include Samantha Haller, Subir Kapuria, Rebeccah R. Riley, Monique N. O'Leary, Katherine H. Schreiber, Julie K. Andersen, Simon Melov and Brian Kennedy. Other collaborators include Thomas A. Rando and Joseph T. Rodgers, Paul Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA; Jianwen Que, Department of Medicine, Columbia University, New York, NY; and Jason Rock, Department of Anatomy, USCF School of Medicine, San Francisco, CA.

The work was supported by grants from the National Institutes of Health R01 AG041764, R01 AG047497, R01 DK100342.

About the Buck Institute for Research on Aging

The Buck Institute is the U.S.'s first independent research organization devoted to Geroscience - focused on the connection between normal aging and chronic disease. Based in Novato, California, the Buck is dedicated to extending "healthspan," the healthy years of human life, and does so by utilizing a unique interdisciplinary approach involving laboratories studying the mechanisms of aging and others focused on specific diseases. Buck scientists strive to discover new ways of detecting, preventing and treating age-related diseases such as Alzheimer's and Parkinson's, cancer, cardiovascular disease, macular degeneration, osteoporosis, diabetes and stroke. In their collaborative research, they are supported by the most recent developments in genomics, proteomics, bioinformatics and stem cell technologies. For more information: http://www.thebuck.org.

Buck Institute for Research on Aging

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Stem Cell Therapy: A Rising Tide: How Stem Cells Are Disrupting Medicine and Transforming Lives
by Neil H Riordan (Author)

Stem Cells: A Short Course
by Rob Burgess (Author)

Stem Cells: Promise And Reality
by Lygia V Pereira (Author)

The Stem Cell Revolution
by Mark Berman MD (Author), Elliot Lander MD (Contributor)

Stem Cells: An Insider's Guide
by Paul Knoepfler (Author)

Stem Cell Revolution: Discover 26 Disruptive Technological Advances to Stem Cell Activation
by Joseph Christiano (Author)

Stem Cells For Dummies
by Lawrence S.B. Goldstein (Author), Meg Schneider (Author)

Essentials of Stem Cell Biology
by Robert Lanza (Editor), Anthony Atala (Editor)

Engineering Stem Cells for Tissue Regeneration
by Ngan F Huang (Author), Ngan F Huang (Editor), Nicolas L'Heureux (Editor), Song L (Editor)

The Science of Stem Cells
by Jonathan M. W. Slack (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Hacking The Law
We have a vision of justice as blind, impartial, and fair — but in reality, the law often fails those who need it most. This hour, TED speakers explore radical ways to change the legal system. Guests include lawyer and social justice advocate Robin Steinberg, animal rights lawyer Steven Wise, political activist Brett Hennig, and lawyer and social entrepreneur Vivek Maru.
Now Playing: Science for the People

#495 Earth Science in Space
Some worlds are made of sand. Some are made of water. Some are even made of salt. In science fiction and fantasy, planet can be made of whatever you want. But what does that mean for how the planets themselves work? When in doubt, throw an asteroid at it. This is a live show recorded at the 2018 Dragon Con in Atlanta Georgia. Featuring Travor Valle, Mika McKinnon, David Moscato, Scott Harris, and moderated by our own Bethany Brookshire. Note: The sound isn't as good as we'd hoped but we love the guests and the conversation and we wanted to...