Solar power advances possible with new 'double-glazing' device

December 07, 2017



A new 'double-glazing' solar power device - which is unlike any existing solar panel and opens up fresh opportunities to develop more advanced photovoltaics - has been invented by University of Warwick researchers.

This unique approach, developed by Dr Gavin Bell and Dr Yorck Ramachers from Warwick's Department of Physics, uses gas - rather than vacuum - to transport electrical energy,

The device is essentially a thin double-glazed window. The outer pane is transparent and conducts electricity. The inner window is coated with a special material, which acts a source of electrons under illumination by sunlight - this is called a "photocathode".

The two panes are separated by a safe inert gas, such as argon - exactly as is found in high quality double glazing windows.

When sunlight hits the device, electrons are knocked out of the photocathode and bounce through the gas to the outer pane without being absorbed or lost.

This is totally different to how electrons act in existing solar panels, and opens up the possibility of improving solar power generation methods - whereas improvements in classic photovoltaics are hard to come by.

The electrons are then collected and the electrical energy pumped into the grid. This can be done through a gas-filled gap rather than a vacuum which would be far more cost-effective for any practical device.

Dr Bell and Dr Ramachers re-investigated ideas about the photoelectric effect dating back to Nikola Tesla and Albert Einstein when they considered whether these ideas could be used for modern solar power generation - leading to the development of this new process.

Dr Gavin Bell, from the University of Warwick's Department of Physics, commented:

"It's satisfying to find a new twist on ideas dating back to the start of the 20th century, and as a materials physicist it is fascinating to be looking for materials which would operate in an environment so different to standard photocathodes."

The optimal material for the photosensitive layer still needs to be identified, and the researchers have proposed a range of candidate materials - including thin films of diamond, which would be very robust and long-lasting.

The transparency of the photocathode could be varied, leading to the possibility of tinted windows generating solar power.

The researchers would like the scientific community to think about potential optimal materials:

"We think the materials challenge is really critical here so we wanted to encourage the materials science community to get creative," said Dr Bell. "Our device is radically different from standard photovoltaics, and can even be adapted for other green technologies such as turning heat directly into electricity, so we hope this work will inspire new advances."
-end-


University of Warwick

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.