Nav: Home

Are molecules right-handed or left-handed?

December 07, 2017

The starting signal is given and two electrons speed off in opposite directions. The one that wins the race is barely seven attoseconds (7x10-18 seconds) ahead. The difference is so small that up till now it has been impossible to measure. Yet, that difference is caused by chirality, a hallmark of molecules that emit electrons. An international research team (INRS/CNRS/CEA/UPMC/University of Bordeaux/Weizmann Institute) made this incredibly precise measurement by directing an ultrafast laser beam at camphor molecules. Theoretical equations predicted the result, but as one of the authors of the research article published in Science on December 8, 2017 explains, no one has been able to prove it before.

You can get a good idea of what chirality is by putting a right-handed glove on your left hand: two identical shapes that cannot be superimposed because they are mirror images of each other. This property is common in our universe, from the smallest particles to huge galaxies.

Although the physical characteristics of chiral molecules are the same, only one of the forms is generally used by living organisms, for example in DNA or amino acids. There are many possible reasons why this "homochirality of life" exists, but no consensus on the definitive explanation. Yet the consequences of this phenomenon are immense, for example in pharmacology, where the two mirror images of a chiral molecule can have very different therapeutic effects.

To reveal the subtle properties of mirror molecules in this study, the researchers examined their photoionization, namely the way they emit electrons when hit by light. Light produced by an ultrafast laser at Centre lasers intenses et applications (CELIA, CNRS/University of Bordeaux/CEA) in Bordeaux was circularly polarized and then directed at camphor molecules. This made the electromagnetic field take on a regular spiral shape whose direction could be changed. When this spiral-shaped light hit a chiral molecule, it made it emit an electron, which also followed a spiral path.

Gaseous camphor molecules are oriented in a random fashion, so the laser beam doesn't always hit the chiral molecule on the same side, and electrons are emitted in different directions. Yet for a given mirror image, more electrons are emitted either in the same or opposite direction as the light, depending on the direction of the polarization, just like a nut turns one way or another depending on which direction the wrench is turned.

Samuel Beaulieu, a PhD student in energy and materials co-supervised at lNRS and the University of Bordeaux, investigated the source of this phenomenon with his colleagues by measuring very precisely how the electrons are emitted. This not only enabled him to confirm that more electrons are emitted in one direction, but also led him to discover that they were emitted seven attoseconds earlier than in the opposite. So the reaction of a camphor molecule ionized by circularly polarized light is asymmetric.

The asymmetric ionization of chiral molecules is one possible explanation of the homochiral nature of living organisms. Samuel Beaulieu's experiment captured the first few attoseconds of a process that over billions of year of evolution could have led to a preference for certain left-handed or right-handed molecules in the chemistry of life. It will take other fundamental discoveries like this one before we understand all the steps in this story, which take place in attoseconds.
-end-
About the publication

Samuel Beaulieu's research is conducted under the supervision of INRS professor François Légaré and Yann Mairesse, research fellow at CNRS. The results were published in an article entitled "Attosecond-resolved photoionization of chiral molecules," in Science on December 7, 2017.

Samuel Beaulieu, A. Comby, A. Clergerie, J. Caillat, D. Descamps, N. Dudovich, B. Fabre, R. Généreux, François Légaré, S. Petit, B. Pons, G. Porat, T. Ruchon, R. Taïeb, V. Blanchet, and Yann Mairesse co-authored this publication, which received financial support from the European Research Council (ERC), Laserlab Europe, the French National Research Agency (ANR), the Plas@Par LABEX project, and the Natural Sciences and Engineering Research Council of Canada.

The authors of this publication are affiliated with Institut national de la recherche scientifique (INRS), the National Center for Scientific Research (CNRS), the French Alternative Energies and Atomic Energy Commission (CEA), the University of Bordeaux, Pierre and Marie Curie University, and the Weizmann Institute of Science in Rehovot.

Source: Stéphanie Thibault, Communications Advisor, INRS, stephanie.thibault@inrs.ca, +1 514 499-6612

Other contact person: Samuel Beaulieu, main author and Ph.D. student at INRS and the University of Bordeaux, beaulieus@emt.inrs.ca

Institut national de la recherche scientifique - INRS

Related Electrons Articles:

Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Electrons in rapid motion
Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique.
Taming electrons with bacteria parts
In a new study, scientists at the MSU-DOE Plant Research Laboratory report a new synthetic system that could guide electron transfer over long distances.
Hot electrons harvested without tricks
Semiconductors convert energy from photons into an electron current. However, some photons carry too much energy for the material to absorb.
Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
New method for detecting quantum states of electrons
Researchers in the Quantum Dynamics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) devised a new method -- called image charge detection -- to detect electrons' transitions to quantum states.
Slow electrons to combat cancer
Slow electons can be used to destroy cancer cells - but how exactly this happens has not been well understood.
How light steers electrons in metals
Researchers in the Department of Physics of ETH Zurich have measured how electrons in so-called transition metals get redistributed within a fraction of an optical oscillation cycle.
Twisting whirlpools of electrons
Using a novel approach, EPFL physicists have been able to create ultrafast electron vortex beams, with significant implications for fundamental physics, quantum computing, future data-storage and even certain medical treatments.
More Electrons News and Electrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.