Nav: Home

New mapping technique can help fight extreme poverty

December 07, 2017

BUFFALO, N.Y. -- For years, policymakers have relied upon surveys and census data to track and respond to extreme poverty.

While effective, assembling this information is costly and time-consuming, and it often lacks detail that aid organizations and governments need in order to best deploy their resources.

That could soon change.

A new mapping technique, described in the Nov. 14 issue of the Proceedings of the National Academies of Sciences, shows how researchers are developing computational tools that combine cellphone records with data from satellites and geographic information systems to create timely and incredibly detailed poverty maps.

"Despite much progress in recent decades, there are still more than 1 billion people worldwide lacking food, shelter and other basic human necessities," says Neeti Pokhriyal, one of the study's co-lead authors, and a PhD candidate in the Department of Computer Science and Engineering at the University at Buffalo.

The study is titled "Combining Disparate Data Sources for Improved Poverty Prediction and Mapping."

Some organizations define extreme poverty as a severe lack of food, health care, education and other basic needs. Others relate it to income; for example, the World Bank says people living on less than $1.25 per day (2005 prices) are extremely impoverished.

While declining in most areas of the world, roughly 1.2 billion people still live in extreme poverty. Most are in Asia, sub-Saharan Africa and the Caribbean. Aid organizations and governmental agencies say that timely and accurate data are vital to ending extreme poverty.

The study focuses on Senegal, a sub-Saharan country with a high poverty rate.

The first data set are 11 billion calls and texts from more than 9 million Senegalese mobile phone users. All information is anonymous and it captures how, when, where and with whom people communicate with.

The second data set comes from satellite imagery, geographic information systems and weather stations. It offers insight into food security, economic activity and accessibility to services and other indicators of poverty. This can be gleaned from the presence of electricity, paved roads, agriculture and other signs of development.

The two datasets are combined using a machine learning-based framework.

Using the framework, the researchers created maps detailing the poverty levels of 552 communities in Senegal. Current poverty maps divide the nation in four regions. The framework also can help predict certain dimensions of poverty such as deprivations in education, standard of living and health.

Unlike surveys or censuses, which can take years and cost millions of dollars, these maps can be generated quickly and cost-efficiently. And they can be updated as often as the data sources are updated. Plus, their diagnostic nature can help assist policymakers in designing better interventions to fight poverty.

Pokhriyal, who began work on the project in 2015 and has travelled to Senegal, says the goal is not to replace census and surveys but to supplement these sources of information in between cycles. The approach could also prove useful in areas of war and conflict, as well as remote regions.
-end-
The work is supported by the Bill and Melinda Gates Foundation. The study's other co-lead author is Damien Jacques, a PhD candidate in the Earth and Life Institute -Environment, Universite Catholique de Louvain, Belgium.

Contact:

Cory Nealon
University at Buffalo
716-645-4614
cmnealon@buffalo.edu

University at Buffalo

Related Engineering Articles:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity
Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.
COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.
Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.