Molecular insights into spider silk

December 07, 2018

They are lightweight, almost invisible, highly extensible and strong, and of course biodegradable: the threads spiders use to build their webs. In fact, spider silk belongs to the toughest fibres in nature. Based on its low weight it even supersedes high-tech threads like Kevlar or Carbon. Its unique combination of strength and extensibility renders it in particular attractive for industry. Whether in aviation industry, textile industry, or medicine - potential applications of this magnificent material are manifold.

Since long time material scientists continue to try reproducing the fibre in the laboratory, but with limited success. Today, it is possible to manufacture artificial spider silk of similar properties as the prototype, but the molecular-level structural details responsible for material properties await to be disclosed. Now, scientists from the Julius-Maximilians-Universität Würzburg (JMU) delivered new insights. Dr Hannes Neuweiler, lecturer at the Institute of Biotechnology and Biophysics at the JMU, is in charge of this project. His results are published in the scientific journal Nature Communications.

A molecular clamp connects protein building blocks

"The silk fibres consist of protein building blocks, so-called spidroins, which are assembled by spiders within their spinning gland", explains Neuweiler. The terminal ends of building blocks take special roles in this process. The two ends of a spidroin are terminated by an N- and a C-terminal domain.

The domains at both ends connect protein building blocks. In the present study, Neuweiler and colleagues took a close look at the C-terminal domain. The C-terminal domain connects two spidroins through formation of an intertwined structure that resembles a molecular clamp. Neuweiler describes the central result of the study: "We observed that the clamp self-assembles in two discrete steps. While the first step comprises association of two chain ends, the second step involves the folding of labile helices in the periphery of the domain".

This two-step process of self-assembly was previously unknown and may contribute to extensibility of spider silk. It is known that stretching of spider silk is associated with unfolding of helix. Previous work, however, traced extensibility back to the unfolding of helices in the central segment of spidroins. "We propose that the C-terminal domain might also act as module that contributes to extensibility" explains Neuweiler.

Assisting material science

In their study Neuweiler and co-workers investigated protein building blocks of the nursery web spider Euprosthenops australis. They used genetic engineering to exchange individual moieties of building blocks and modified the protein chemically using fluorescent dyes. Finally, the interaction of light with soluble proteins disclosed that the domain assembles in two discrete steps.

Neuweiler describes the result as "a contribution to our molecular-level understanding of structure, assembly and mechanical properties of spider silk". It may aid material scientists to reproduce natural spider silk in the laboratory. Currently, modified and synthetic spidroins are being used for this purpose. "Should the C-terminal domain contribute to flexibility of the thread, material scientists may modulate mechanical properties of the fibre through modulation of the C-terminal domain", Neuweiler says.
-end-


University of Würzburg

Related Spider Silk Articles from Brightsurf:

Silk road contains genomic resources for improving apples
The fabled Silk Road is responsible for one of our favorite and most valuable fruits: the domesticated apple.

Tapping secrets of Aussie spider's unique silk
The basket-web spider, which is found only in Australia, has revealed it not only weaves a unique lobster pot web but that its silk has elasticity and a gluing substance, that creates a high degree of robustness.

Silk offers homemade solution for COVID-19 prevention
A University of Cincinnati biology study found that silk fabric performs similarly to surgical masks when used in conjunction with respirators but has the added advantages of being washable and repelling water, which would translate to helping to keep a person safer from the airborne virus.

A new species of spider
During a research stay in the highlands of Colombia conducted as part of her doctorate, Charlotte Hopfe, PhD student at the University of Bayreuth, has discovered and zoologically described a new species of spider.

Preventing infection, facilitating healing: New biomaterials from spider silk
New biomaterials developed at the University of Bayreuth eliminate risk of infection and facilitate healing processes.

Mixing silk with polymers could lead to better biomedical implants
Spun by spiders and silkworms, silk has mystified human engineers who have yet to figure out how to artificially recreate it.

Spider silk inspires new class of functional synthetic polymers
Synthetic polymers have changed the world around us. However, It is hard to finely tune some of their properties, such as the ability to transport ions.

The earliest cat on the Northern Silk Road
Dr. Irina Arzhantseva and Professor Heinrich Haerke from the Centre for Classical and Oriental Archaeology (IKVIA, Faculty of Humanities, HSE University) have been involved in the discovery of the earliest domestic cat yet found in northern Eurasia.

Spider silk made by photosynthetic bacteria
A research team in Japan reported that they succeeded in producing the spider silk -- ultra-lightweight, though, biodegradable and biocompatible material -- using photosynthetic bacteria.

Spider silk can create lenses useful for biological imaging
Spider silk is useful for a variety of biomedical applications: It exhibits mechanical properties superior to synthetic fibers for tissue engineering, and it is not toxic or harmful to living cells.

Read More: Spider Silk News and Spider Silk Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.