Grasping an object - model describes complete movement planning in the brain

December 07, 2020

Every day we effortlessly make countless grasping movements. We take a key in our hand, open the front door by operating the door handle, then pull it closed from the outside and lock it with the key. What is a natural matter for us is based on a complex interaction of our eyes, different regions of the brain and ultimately our muscles in the arm and hand. Neuroscientists at the German Primate Center (DPZ) - Leibniz Institute for Primate Research in Göttingen have succeeded for the first time in developing a model that can seamlessly represent the entire planning of movement from seeing an object to grasping it. Comprehensive neural and motor data from grasping experiments with two rhesus monkeys provided decisive results for the development of the model, which is an artificial neural network that, by feeding it with images showing certain objects, is able to simulate processes and interactions in the brain for the processing of this information. The neuronal data from the artificial network model were able to explain the complex biological data from the animal experiments and thus prove the validity of the functional model. This could be used in the long term for the development of better neuroprostheses, for example, to bridge the damaged nerve connection between brain and extremities in paraplegia and thus restore the transmission of movement commands from the brain to arms and legs (PNAS).

Rhesus monkeys, like humans, have a highly developed nervous and visual system as well as dexterous hand motor control. For this reason, they are particularly well suited for research into grasping movements. From previous studies in rhesus monkeys it is known that the interaction of three brain areas is responsible for grasping a targeted object. Until now, however, there has been no detailed model at the neural level to represent the entire process from the processing of visual information to the control of arm and hand muscles for grasping that object.

In order to develop such a model, two male rhesus monkeys were trained to grasp 42 objects of different shapes and sizes, presented to them in random order. The monkeys wore a data glove that continuously recorded the movements of arm, hand and fingers. The experiment was performed by first briefly illuminating the object to be grasped while the monkeys looked at a red dot below the respective object and performed the grasping movement with a short delay after a blinking signal. These conditions provide information about the time at which the different brain areas are active in order to generate the grasping movement and the associated muscle activations based on the visual signals.

In the next step, images of the 42 objects, taken from the perspective of the monkeys, were fed into an artificial neural network in the computer, whose functionality was mimicking the biological processes in the brain. The network model consisted of three interconnected stages, corresponding to the three cortical brain areas of the monkeys, and provided meaningful insights into the dynamics of the brain networks. After appropriate training with the behavioral data of the monkeys, the network was able to precisely reflect the grasping movements of the rhesus monkeys. It was able to process images of recognizable objects and could reproduce the muscle dynamics required to grasp the objects accurately.

The results obtained using the artificial network model were then compared with the biological data from the monkey experiment. It turned out that the neural dynamics of the model were highly consistent with the neural dynamics of the cortical brain areas of the monkeys. "This artificial model describes for the first time in a biologically realistic way the neuronal processing from seeing an object for object recognition, to action planning and hand muscle control during grasping", says Hansjörg Scherberger, head of the Neurobiology Laboratory at the DPZ, and he adds: "This model contributes to a better understanding of the neuronal processes in the brain and in the long term could be useful for the development of more efficient neuroprostheses."

Deutsches Primatenzentrum (DPZ)/German Primate Center

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to