Harnessing quantum properties to create single-molecule devices

December 07, 2020

New York, NY--December 7, 2020--Researchers, led by Columbia Engineering Professor Latha Venkataraman, report today that they have discovered a new chemical design principle for exploiting destructive quantum interference. They used their approach to create a six-nanometer single-molecule switch where the on-state current is more than 10,000 times greater than the off-state current--the largest change in current achieved for a single-molecule circuit to date.

This new switch relies on a type of quantum interference that has not, up to now, been explored. The researchers used long molecules with a special central unit to enhance destructive quantum interference between different electronic energy levels. They demonstrated that their approach can be used to produce very stable and reproducible single-molecule switches at room temperature that can carry currents exceeding 0.1 microamps in the on-state. The length of the switch is similar to the size of the smallest computer chips currently on the market and its properties approach those of commercial switches. The study is published today in Nature Nanotechnology.

"We observed transport across a six-nanometer molecular wire, which is remarkable since transport across such long length scales is rarely observed," said Venkataraman, Lawrence Gussman Professor of Applied Physics, professor of chemistry, and Vice Provost for Faculty Affairs. "In fact, this is the longest molecule we have ever measured in our lab."

Over the last 45 years, steady decreases in transistor size have enabled dramatic improvements in computer processing and ever-shrinking device sizes. Today's smartphones contain hundreds of millions of transistors made out of silicon. However, current methods of making transistors are rapidly approaching the size and performance limits of silicon. So, if computer processing is to advance, researchers need to develop switching mechanisms that can be used with new materials.

Venkataraman is at the forefront of molecular electronics. Her lab measures fundamental properties of single-molecule devices, seeking to understand the interplay of physics, chemistry, and engineering at the nanometer scale. She is particularly interested in gaining a deeper understanding of the fundamental physics of electron transport, while laying the groundwork for technological advances.

At the nanometer scale, electrons behave as waves rather than particles and electron transport occurs via tunneling. Like waves on the surface of water, electron waves can constructively interfere or destructively interfere. This results in nonlinear processes. For example, if two waves constructively interfere, the amplitude (or height) of the resulting wave is more than the sum of the two independent waves. Two waves can be completely cancelled out with destructive interference.

"The fact that electrons behave as waves is the essence of quantum mechanics," Venkataraman noted.

At the molecular scale, quantum mechanical effects dominate electron transport. Researchers have long predicted that the nonlinear effects produced by quantum interference should enable single-molecule switches with large on/off ratios. If they could harness the quantum mechanical properties of molecules to make circuit elements, they could enable faster, smaller, and more energy-efficient devices, including switches.

"Making transistors out of single molecules represents the ultimate limit in terms of miniaturization and has the potential to enable exponentially faster processing while decreasing power consumption," said Venkataraman. "Making single-molecule devices that are stable and able to sustain repeated switching cycles is a non-trivial task. Our results pave the way towards making single-molecule transistors."

A common analogy is to think of transistors like a valve on a pipe. When the valve is open, water flows through the pipe. When it is closed, the water is blocked. In transistors, the water flow is replaced with the flow of electrons, or current. In the on-state, current flows. In the off-state, current is blocked. Ideally, the amount of current flowing in the on- and off-states must be very different; otherwise, the transistor is like a leaky pipe where it is hard to tell whether the valve is open or closed. Since transistors function as switches, a first step in designing molecular transistors is to design systems where you can toggle current flow between an on- and off-state. Most past designs, however, have created leaky transistors by using short molecules where the difference between the on- and the off-state was not significant.

To overcome this, Venkataraman and her team faced a number of hurdles. Their main challenge was to use chemical design principles to create molecular circuits where quantum interference effects could strongly suppress current in the off-state, thus mitigating the leakage issues.

"It is difficult to completely turn off current flow in short molecules due to the greater probability of quantum mechanical tunneling across shorter length scales" explained the study's lead author Julia Greenwald, a PhD student in Venkataraman's lab. "The reverse is true for long molecules, where it is often difficult to achieve high on-state currents because tunneling probability decays with length. The circuits we designed are unique because of their length and their large on/off ratio; we are now able to achieve both a high on-state current and very low off-state current."

Venkataraman's team created their devices using long molecules synthesized by collaborator Peter Skabara, Ramsay Chair of Chemistry, and his group at the University of Glasgow. Long molecules are easy to trap between metal contacts to create single-molecule circuits. The circuits are very stable and can repeatedly sustain high applied voltages (exceeding 1.5 V). The electronic structure of the molecules enhances interference effects, enabling a pronounced nonlinearity in current as a function of applied voltage, which leads to a very large ratio of on-state current to off-state current.

The researchers are continuing to work with the team at the University of Glasgow to see if their design approach can be applied to other molecules, and to develop a system where the switch can be triggered by an external stimulus.

"Our building a switch out of a single molecule is a very exciting step towards bottom-up design of materials using molecular building blocks," Greenwald said. "Building electronic devices with single molecules acting as circuit components would be truly transformative."
About the Study

The study is titled "Highly nonlinear transport across single-molecule junctions via destructive quantum interference."

Authors are: Julia E. Greenwald 1, Joseph Cameron 2, Neil J. Findlay 2, Tianren Fu 1, Suman Gunasekaran 1, Peter J. Skabara 2, and Latha Venkataraman 1,3?

1Department of Chemistry, Columbia University

2WestCHEM, School of Chemistry, University of Glasgow

3Department of Applied Physics and Mathematics, Columbia Engineering

The study was supported by National Science Foundation (NSF) Graduate Research Fellowships DGE-1644869, NSF grants CHE-1764256, NSF DMR-1807580, Engineering and Physical Sciences Research Council (EPSRC) grants EP/P02744X/2 and EP/N035496/2.

The authors declare no financial or other conflicts of interest.


Paper: https://www.nature.com/articles/s41565-020-00807-x

DOI: 10.1038/s41565-020-00807-x






Columbia Engineering

Columbia Engineering, based in New York City, is one of the top engineering schools in the U.S. and one of the oldest in the nation. Also known as The Fu Foundation School of Engineering and Applied Science, the School expands knowledge and advances technology through the pioneering research of its more than 220 faculty, while educating undergraduate and graduate students in a collaborative environment to become leaders informed by a firm foundation in engineering. The School's faculty are at the center of the University's cross-disciplinary research, contributing to the Data Science Institute, Earth Institute, Zuckerman Mind Brain Behavior Institute, Precision Medicine Initiative, and the Columbia Nano Initiative. Guided by its strategic vision, "Columbia Engineering for Humanity," the School aims to translate ideas into innovations that foster a sustainable, healthy, secure, connected, and creative humanity.

Columbia University School of Engineering and Applied Science

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.