Brain clears the way for binocular vision even before eyes are open

December 07, 2020

DURHAM, N.C. - To prepare the brain for binocular vision and depth perception, first you have to take out some of the chandeliers.

That's the takeaway from a group of neurobiologists who studied the development of binocular vision in the mouse brain. They discovered that chandelier cells, so-named because they have many long extensions that control the firing of hundreds of excitatory pyramidal neurons and resemble a chandelier light fixture, are selectively removed from the developing mouse visual cortex even before the animal's eyes are open by a process of programmed cell death called apoptosis.

This pruning of about half of the chandelier cells in the second week of development probably clears a path for certain pyramidal neurons to be more active, since chandeliers tend to have a dampening effect on their excitability, explained Josh Huang, a professor of neurobiology in the Duke University School of Medicine. He led this research at his previous position in Cold Spring Harbor Laboratory on Long Island, spearheaded by postdoctoral fellow Bor-Shuen Wang. The findings appear Dec. 7 in the journal Neuron.

"Binocular vision requires fast communication between the two visual hemispheres that receive information in the center visual field," Huang said. "What we think is that to allow that to happen, the area that mediates this fast communication needs to have reduced inhibition," accomplished via fewer inhibitory chandelier cells.

The binocular vision enjoyed by mammals like mice and humans is a collaboration of the physical abilities of the eyes and the interpretative abilities of the brain, Huang said. "Many animals (such as a lizard) can see with both eyes, but their processing of visual information from each eye is largely separate. Only in most mammals is there a central part of the visual world that is seen by both eyes and it is the brain that has to combine the left and right visual images into a coherent single perception."

Some of the binocular system is laid down by genetic instructions that build the structures of the visual pathways, but the finer visual circuits are shaped by visual experience.

"The whole process of brain development is a continuous process in which genetic information plays a major role in constructing larger scaffold of the brain network," Huang said. "But later, there are learning- and experience-dependent processes that begin to customize many of the details of the brain circuits for each individual. The phenomenon we're talking about is right at the juncture between the genetic-instructed and use-dependent mechanisms," Huang said.

Adding to the complexity, the brain processes binocular vision in two different and coordinated ways, Huang said. As signals travel from the left and right retina to the thalamus, some signals cross to the other side of the brain, and others don't, but they converge in the visual cortex, thereby contributing to binocular vision. The second path is that the left and right visual cortexes, receiving information from the retina, communicate through callosal neurons via the corpus callosum, a connection between brain hemispheres. That further sharpens binocular vision.

In that second week after birth and before their eyes open, the retinas of the developing mouse generate waves of activity that help organize the visual cortex by reducing the density of the inhibitory chandelier cells. This is achieved by instructing the callosal neurons to literally kill half of the chandelier cells. The researchers showed that blocking those retinal inputs prevented chandelier cell pruning in the visual cortex.

When they experimentally prevented the chandelier pruning in some mice, those mice flunked a 3D visual perception test, but otherwise seemed to see and behave normally. To confirm that the chandelier pruning is driven by retinal activity without any visual input, pups were raised in complete darkness. And the chandelier pruning still happened.

"Most likely, that killing of chandelier cells by callosal neurons is not random but is a step of proper binocular circuit assembly," Huang said. As young chandelier cells begin to form connections, those that form the "wrong connections" that may slow down the callosal pathway are likely to be selectively killed, while others that contribute to other aspects of visual processing are preserved. When pruning was blocked, a significant portion of the remaining chandelier cells appeared stunted. Those, he thinks, are the ones that would have been pruned.
-end-
This research was supported by the U.S. National Institutes of Health (R01 MH094705-06, 1S10OD021759-01, 2P01AG001751-33A1, R01 EY015788), and the Cold Spring Harbor Lab Robertson Neuroscience Fund.

CITATION: "Retinal and Callosal Activity-Dependent Chandelier Cell Elimination Shapes Binocularity in Primary Visual Cortex," Bor-Shuen Wang, Maria Sol Bernardez Sarria, An Xu, Miao He, Nazia M. Alam, Glen T. Prusky, Michael C. Crair, Z. Josh Huang. Neuron, Dec. 7, 2020. DOI: 10.1016/j.neuron.2020.11.004

Duke University

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.