Rise of the underdog: a neglected mechanism in antiferromagnets may be key to spintronics

December 07, 2020

Enormous efforts are being made worldwide in a technological field that could far surpass the capabilities of conventional electronics: spintronics. Instead of operating based on the collective movement of charged particles (electrons), spintronic devices could perform memory storage and data transmission by manipulating spin, an intrinsic property of elementary particles related to angular momentum and from which many magnetic characteristics in materials arise. Unfortunately, controlling spin has proven to be a challenging endeavor, leading physicists and engineers to look for efficient materials and techniques to do so.

In this regard, antiferromagnetic materials (AFMs) are good candidates for spintronics because they are resistant to external magnetic fields and allow for switching spin values in timescales of picoseconds. One promising strategy to manipulate spin orientation in AFMs is using an optical laser to create extremely short-lived magnetic field pulses, a phenomenon known as the inverse Faraday effect (IFE). Although the IFE in AFMs generates two very distinct types of torque (rotational force) on their magnetization, it now seems the most important of the two has somehow been neglected in research.

In a recent study published in Nature Communications, a trio of scientists, including Professor Takuya Satoh from the Tokyo Tech, Japan, delved deep into this issue. Spin dynamics in AFMs are described by a sum of two terms: field-like torque and damping-like torque (Figure 1). The latter, as the word 'damping' implies, is related to the gradual decay (or dying off) of the spin oscillations triggered by the optical pulses on the material.

Until now, scientists studied the damping-like torque only from the perspective of spin relaxation after excitation, believing its amplitude to be small during the ultrashort spin excitation process. In this study, however, Prof Satoh and colleagues found it to be, in some cases, the main player in terms of spin reorientation due to the IFE. Through theoretical analyses and experimental verification in both YMnO3 and HoMnO3, they clarified the conditions under which the damping effect becomes the dominant spin excitation mechanism.

A simplified interpretation of the findings can be as follows. Imagine a hanging pendulum (magnetization direction) oscillating in wide arcs, drawing a very pronounced ellipse. The damping-like torque produces a large instantaneous perturbation in the direction of the small diameter, 'tipping it off' and causing it to lean like a spinning top that is about to fall. "The otherwise small damping-related magnetization causes a large spin canting because of the extreme ellipticity inherent to AFMs," explains Prof Satoh. "Considering that it is possible to adjust the strength of the damping by strategically selecting the ions in the AFM, we might have found a way to tune material properties for specific spintronic applications," he adds.

The trio of scientists also tested how spin dynamics are influenced by temperature, which affects and even destroys antiferromagnetic order past certain thresholds. By putting the materials close to the critical transition points, they managed to produce a more pronounced effect from damping-type torque. Excited about the results, Prof Satoh remarks: "Our results indicate that optically generated torques might provide the long sought-after tool enabling the efficient realization of ultrafast spin switching in AFMs."

Although much more research will certainly be needed before applied spintronics becomes a reality, uncovering efficient mechanisms for spin manipulation is obviously among the first steps. This study proves that such mechanisms might be hidden in phenomena we know and neglect!

Tokyo Institute of Technology

Related Spintronics Articles from Brightsurf:

A four-state magnetic tunnel junction for novel spintronics applications
Researchers have introduced a new type of MTJ with four resistance states, and successfully demonstrated switching between the states with spin currents.

Ultrafast electrons in magnetic oxides: A new direction for spintronics?
Special metal oxides could one day replace semiconductor materials that are commonly used today in processors.

Efficient valves for electron spins
Researchers at the University of Basel in collaboration with colleagues from Pisa have developed a new concept that uses the electron spin to switch an electrical current.

Magnetic memory states go exponential
Researchers showed that relatively simple structures can support exponential number of magnetic states - much greater than previously thought - and demonstrated switching between the states by generating spin currents.

New breakthrough in 'spintronics' could boost high speed data technology
Scientists have made a pivotal breakthrough in the important, emerging field of spintronics -- which could lead to a new high speed energy efficient data technology.

A path to new nanofluidic devices applying spintronics technology
Japanese scientists have elucidated the mechanism of the hydrodynamic power generation using spin currents in micrometer-scale channels, finding that power generation efficiency improves drastically as the size of the flow is made smaller.

Extensive review of spin-gapless semiconductors: Next-generation spintronics candidates
An Australian has published an extensive review of spin-gapless semiconductors (SGSs), a new class of 'zero bandgap' materials which have fully spin polarised electrons and holes, and first proposed in 2008 by the review team's lead, Professor Xiaolin Wang (University of Wollongong).

Graphene and 2D materials could move electronics beyond 'Moore's Law'
A team of researchers based in Manchester, the Netherlands, Singapore, Spain, Switzerland and the USA has published a new review on a field of computer device development known as spintronics, which could see graphene used as building block for next-generation electronics.

Toward a more energy-efficient spintronics
In order to generate and detect spin currents, spintronics traditionally uses ferromagnetic materials whose magnetization switching consume high amounts of energy.

Computing with molecules: A big step in molecular spintronics
Chemists and physicists at Kiel University joined forces with colleagues from France, and Switzerland to design, deposit and operate single molecular spin switches on surfaces.

Read More: Spintronics News and Spintronics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.