Newly discovered fossils prove 'Shangri-La'-like ecosystem in central Tibet

December 07, 2020

Despite decades of investigation, Tibet's ancient topography and its role in climatic and biotic evolution remain speculative due to a paucity of quantitative surface height measurements through time and space, and sparse fossil records.

During the Second Tibetan Plateau Scientific Expedition in Tibet, an international research team from the Xishuangbanna Tropical Botanical Garden (XTBG) and the Institute of Vertebrate Paleontology and Paleoanthropology discovered a highly diverse fossil assemblage from the current elevation of ?4,850 m in the Bangor Basin in central Tibet.

"These fossils characterize a luxuriant seasonally wet and warm Shangri-La forest that once occupied a deep central Tibetan valley along the Banggong-Nujiang Suture (BNS)," said Dr. SU Tao, who published this research in PNAS.

The 70 plant fossil taxa so far recovered include the first occurrences of several modern Asian lineages and represent a middle Eocene (about 47 million years ago) humid subtropical ecosystem.

Many taxa in the Jianglang flora, e.g., Apocynaceae, Ceratophyllum, Illigera, Lagokarpos, and Vitaceae, represent first discoveries for the plateau, and some are the oldest fossil records for these taxa in Asia, e.g., Apocynaceae, Cedrelospermum, Lagokarpos, and Limnobiophyllum.

"These fossils not only record the diverse composition of the ancient Tibetan biota, but also allow us to constrain the middle Eocene land surface height in central Tibet to ?1,500 ± 900 m, and quantify the prevailing thermal and hydrological regime," said Prof. ZHOU Zhekun of XTBG.

By reconstructing ancient climate parameters encoded in leaf morphological traits, the researchers quantified both the climate and elevation of central Tibet in the middle Eocene. They calculated that the forest grew at an elevation of about 1500 meters within an east-west trending valley under a monsoonal climate.

"In the future, the complex topography of Tibet in the geological past needs to be considered when studying the paleoenvironmental and biodiversity histories on the plateau," said Dr. SU Tao.
-end-


Chinese Academy of Sciences Headquarters

Related Fossils Articles from Brightsurf:

First exhaustive review of fossils recovered from Iberian archaeological sites
The Iberian Peninsula has one of the richest paleontological records in Western Europe.

Fossils reveal mammals mingled in age of dinosaurs
A cluster of ancient mammal fossils discovered in western Montana reveal that mammals were social earlier than previously believed, a new study finds.

Oldest monkey fossils outside of Africa found
Three fossils found in a lignite mine in southeastern Yunan Province, China, are about 6.4 million years old, indicate monkeys existed in Asia at the same time as apes, and are probably the ancestors of some of the modern monkeys in the area, according to an international team of researchers.

Scientists prove bird ovary tissue can be preserved in fossils
A research team led by Dr. Alida Bailleul from the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) of the Chinese Academy of Sciences has proved that remnants of bird ovaries can be preserved in the fossil record.

Biosignatures may reveal a wealth of new data locked inside old fossils
Step aside, skeletons -- a new world of biochemical ''signatures'' found in all kinds of ancient fossils is revealing itself to paleontologists, providing a new avenue for insights into major evolutionary questions.

Fish fossils become buried treasure
Rare metals crucial to green industries turn out to have a surprising origin.

New Argentine fossils uncover history of celebrated conifer group
Newly unearthed, surprisingly well-preserved conifer fossils from Patagonia, Argentina, show that an endangered and celebrated group of tropical West Pacific trees has roots in the ancient supercontinent that once comprised Australia, Antarctica and South America, according to an international team of researchers.

Ancestor of all animals identified in Australian fossils
A team led by UC Riverside geologists has discovered the first ancestor on the family tree that contains most animals today, including humans.

Metabolic fossils from the origin of life
Since the origin of life, metabolic networks provide cells with nutrition and energy.

Fossils of the future to mostly consist of humans, domestic animals
In a co-authored paper published online in the journal Anthropocene, University of Illinois at Chicago paleontologist Roy Plotnick argues that the fossil record of mammals will provide a clear signal of the Anthropocene era.

Read More: Fossils News and Fossils Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.