Scientists discover gene 'signature' for tumor's tendency to spread

December 08, 2002

BOSTON -- Researchers at Dana-Farber Cancer Institute and the Whitehead Institute have discovered a pattern of genetic activity in several types of primary tumors that appears to predict the likelihood that they will spread, or metastasize, to other parts of the body. If larger studies support these findings, this early indicator of life-threatening cancer spread might lead to a clinical test that would help determine appropriate treatment. The study will be published by Nature Genetics on its web site on Dec. 9.

Most cancer deaths are caused not by the original or primary tumor but by the metastasizing of tumor cells to other organs. Until now, cancer specialists have viewed the development of metastasis as an essentially random and unpredictable event.

But that notion is thrown into question with the new finding of a genetic "signature" - a certain pattern of activity in a handful of genes - in some solid tumors that appears to preordain them to spreading dangerously. This signature is present in the early stages of the cancer, well before there is any evidence of metastasis, say the researchers.

"These results strongly support the idea that some primary tumors are pre-configured to metastasize, and that this propensity is detectable at the time of initial diagnosis," says Sridhar Ramaswamy, MD, a researcher at Dana-Farber.

Though metastasis is a common and feared event in cancer patients, what triggers it is poorly understood. Cancer cells must undergo a series of changes to become metastatic: they have to acquire the ability to grow while unattached to any tissue, they need to bore through vessel walls to reach the bloodstream or lymphatic system, and they must develop a new blood supply in order to grow. These events are under the control of different genes.

According to the traditional view, a tumor becomes metastatic more or less by chance as a result of a very few maverick cells developing the ability to spread. "It was thought that there was a randomness to it, as new mutations would be constantly arising and some would confer metastatic potential on the tumor," says Ramaswamy.

By contrast, the researchers say their discovery reveals that the tumor is "encoded" with metastatic potential from early on by a certain group of genes, and that this same group is found in a variety of tumor types.

Ramaswamy and his colleagues compared genetic patterns in samples of primary tumors and samples of metastatic cancers. They were seeking genetic differences that might explain why primary cancers stay put while metastatic clumps of cells break off and migrate through the body.

The scientists analyzed the genetic profiles of 64 primary tumors (adenocarcinomas) and 12 samples of cancers that metastasized from other adenocarcinomas. This analysis revealed a set of 128 genes whose expression pattern differed between the primary tumors and the metastases. The scientists were puzzled by instances in which the 128-gene signature associated with the metastatic cancers was also found in some primary tumors. They concluded, though, that the gene expression program of metastasis may already be present in the bulk of some primary tumors at the time of diagnosis.

Further support for this idea came from analysis of samples from 62 lung cancers, which found the metastasis gene signature in many of them. Next, they hypothesized that lung cancer patients whose primary tumors contained the metastatic signature would do more poorly (would survive a shorter time) than those whose tumors lacked the signature. They found that this was the case.

Finally, the scientists looked in the data for a smaller set of genes that could distinguish between primary and metastatic cancer samples. They found a group of 17 genes whose activity pattern could make the distinction, and they tested it in breast cancers, prostate cancers and even in brain tumors called medulloblastomas.

The researchers were surprised to find the same genetic signature associated with metastasis in several different tumor types. "We had no reason to believe it was this broadly applicable,'' Ramaswamy says, but noted the signature was not evident in lymphoma, a blood cancer that is biologically different from solid tumors.

Further work in larger numbers of tumors is underway as the scientists try to validate the power of the signatures - a necessary step toward a clinical test. Such a test could make a critical difference in treatment of some tumors. For example, up to 30 percent of women with small primary breast cancers have undetectable "micrometastases" that gives them a poorer prognosis. A genetic test that could identify the metastatic potential in those early breast cancers after they're removed could be of significant benefit in designing treatment.

Previous work with genetic profiles has shown that they can aid classification of hard-to-identify cancers, and can in some cases predict whether a tumor will respond well or poorly to treatment. Together with these discoveries, the new findings "support the emerging notion that the clinical outcome of cancer patients can be predicted using the gene expression profiles of primary tumors at diagnosis," the authors wrote.
-end-
The paper's other co-authors are Ken N. Ross, PhD, Eric Lander, PhD, and Todd R. Golub, MD. Ramaswamy and Golub are Dana-Farber investigators who also are affiliated with the Whitehead Institute/MIT Center for Genome Research at MIT. Golub is a Hughes Medical Institute investigator. Ross and Lander are at the Whitehead/MIT center.

The research was funded by the National Institutes of Health.

Dana-Farber Cancer Institute (www.danafarber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Dana-Farber Cancer Institute

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.