Draft sequence of chicken genome completed

December 08, 2004

The draft sequence of the wild chicken, Gallus gallus, will published in the Dec 9th issue of Nature. The analysis of this genome is not just about getting bigger eggs and tastier chicken - it's giving scientists surprising insights into the human genome. Researchers can use these new data as a tool to identify similar sequences in humans - regions previously thought to be 'junk' DNA in the human. These sequences must have an important role if they have been conserved over the 310 million years since the two lineages diverged.

Ewan Birney of the European Bioinformatics Institute (EMBL-EBI), whose Ensembl team performed much of the computational analysis of the genome, explains the importance of the chicken: "We needed to study a genome that is at the right evolutionary distance from humans. Until now, all the fully sequenced genomes have been too closely related or too distant to get the information that we wanted. For example, the mouse genome gave us lots of useful information about coding regions but we were surprised at how much of the junk DNA was almost identical in mouse and human. This is because not enough time has passed since humans and mice diverged from their common ancestor. As a result, we gained very little new insight into the non-coding regions of the human genome."

The chicken genome, on the other hand, turns out to be an invaluable tool for studying the human genome. It is at the ideal evolutionary distance from the human. During the 310 million years since their paths diverged, sequences with important functions, which include genes and their regulatory motifs, have been under pressure not to mutate because changes to the sequence would have detrimental consequences. By contrast, areas of the genome with no function - bona fide 'junk' DNA - have been under no such pressure, and sufficient time has lapsed for these regions to become quite distinct in the two genomes.

"We found strong conservation in regions of humans that were previously thought to be junk DNA. They don't code for RNA or for protein and their function is still a complete mystery, but they must have been conserved for an important reason," Birney says. "Without the chicken genome, we would have continued to wrongly believe that these regions in humans were unimportant."

Scientists have also used the new genome to find a set of genes that is notoriously hard to pin down. These 'non-coding RNA (ncRNA) genes' code for functional RNA molecules rather than proteins. Protein-coding genes are relatively easy to identify because their sequences contain characteristic signals that say 'start here' and 'stop here'. Unfortunately ncRNA genes are less straightforward to pick out. This problem is confounded in humans because we have a lot of 'pseudogenes', sequences that evolved from functional genes that were copied and then fell into disrepair. Chickens, however, contain very few pseudo-genes so their set of ncRNA genes is likely to be a functional set whose counterparts can now be identified in humans. It's also been easier to find the control switches within protein-coding genes. "When you align the chicken and human sequences, the conserved regions really leap out at you. This doesn't happen when you do the same with the mouse and human because the unimportant bits of sequence in between didn't have time to diverge," explains Birney.

Most of the functional differences and commonalities between chickens and humans can be revealed by studying their protein-coding genes. Peer Bork's team at EMBL-Heidelberg, together with Chris Ponting's team at The Medical Research Council Functional Genetics Unit based at Oxford University, approached this task by looking first for shared genes and then for shared sequences that define gene families.

"We are more similar to birds than you would think," explains Bork. "About 60% of the chicken protein-coding genes have human equivalents. But when you look at the entire gene families they have many more families in common: for example, mammals have expanded a certain family of keratins for hair production, whereas birds use a different set for the formation of feathers and claws. We also found some chicken genes involved in immune function that previously were believed to be unique to humans."

An international consortium of over 170 people from 49 different institutes across the globe assembled and analysed this genome. All of the data has been deposited into freely available public databases (see notes).

"Having the chicken genome sequence is like being armed with an antiques guide at a flea market: suddenly you have a tool that allows you to recognize which pieces are valuable," concludes Birney. We're all sure to reap the rewards.

European Molecular Biology Laboratory

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.