NC State gets $1.59M grant to map genome of parasitic worm

December 08, 2004

North Carolina State University scientists, in collaboration with Orion Genomics LLC, have received a two-year, $1.59 million grant from the National Science Foundation/U.S. Department of Agriculture Joint Microbial Genome Sequencing Program to map the genome of one of the world's most common and destructive plant parasites - the microscopic, soil-dwelling root-knot nematode.

Dr. Charles Opperman, professor of plant pathology at NC State, co-director of the Center for the Biology of Nematode Parasitism and the primary investigator for the grant, says the research may help lead to novel means of managing the ubiquitous worm. The resulting sequence data will be made public, so other researchers interested in certain aspects of the root-knot nematode - how it develops, establishes a host-parasite interaction or evades host defenses, for example - will then be able to use the map of the parasite's genes as a tool to discover more specific information about the parasite. The root-knot nematode will be the first parasitic nematode to have its genome sequenced, Opperman says.

Arguably the single most important plant parasitic nematode, Opperman estimates the root-knot nematode causes more than half of the $100 billion in crop and plant damage caused by nematodes yearly. It infects some 2,000 plant species, causing galls or knots on the roots of its victims. It is also an ubiquitous pest for the home gardener.

"Root-knot nematodes invade behind the root tip and migrate to the area of the plant where water and nutrients are transported. A female root-knot nematode will then become sedentary and produce as many as 1,000 eggs in 30 days, which will hatch and re-infect the roots. So you can have multiple generations infecting plants in one season," Opperman says.

Above ground, infected plants will show stunted growth or become yellowed or wilted. The root-knot nematode does not discriminate, infecting peanuts, tomatoes and soybeans, just to name a few widely grown crops.

Finding a way to manage or control the root-knot nematode population hasn't always been very successful to date, Opperman says, mostly due to the high costs of chemical nematicides

"The root-knot nematode's tolerance to pesticides is quite robust, so in many cases the defenses against root-knot nematodes are more toxic to vertebrates than to the nematodes," he says. "There are also non-target effects of pesticides to worry about, like the groundwater and other environmental concerns."

NC State's Genome Research Laboratory will perform about half of the sequencing work, with collaborator Orion Genomics LLC performing the remainder. Collaborating with Opperman on the project are Dr. Bryon Sosinski, director of the Genome Research Lab, and Dr. David Bird, associate professor of plant pathology and co-director of the Center for the Biology of Nematode Parasitism. A variety of post-doctoral students, graduate students and undergraduates will be involved in the project.

"This project represents a significant step forward in the quest to understand the molecular and genetic basis of plant parasitic nematodes' ability to attack crop plants, and will provide an invaluable resource to researchers around the world," Opperman says.

North Carolina State University

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to