Microchip industry strives to perfect its timing

December 08, 2004

Time is money, especially to the semiconductor industry. Electronics manufacturers use extremely sophisticated equipment to churn out the latest microchips, but they have a timing problem. It's very difficult to get all the fabrication tools in a manufacturing line to agree on the time. Components within a single tool can disagree on the time by as much as two minutes, because of a lack of synchronization.

According to a new report by the National Institute of Standards and Technology (NIST) and International SEMATECH,* the timing deficiencies will become important as device dimensions and tolerances continue to shrink. In particular, timing becomes critical as firms advance e-manufacturing concepts such as real-time automation and intelligent control.

Tools can be synchronized to about 100 millisecond (ms) accuracies today, but with significant variations. The problems are myriad, according to the report. For instance, subsystems made by suppliers may lack the interfaces needed to synchronize their clocks with host clocks made by original equipment manufacturers. Quality control software that relies on time stamps to diagnose processing errors may overload the computing resources of fabrication systems, therefore degrading the time stamp accuracy. There also is pressure to move forward: Methods are available to reach 1 ms accuracy in the near future, but sub-millisecond accuracies will be required eventually.

To help achieve that level of precision, NIST is leveraging its timekeeping expertise to support the industry's development of time synchronization standards in collaboration with International SEMATECH's e-Manufacturing initiatives. A next-generation time synchronization protocol under development by the Institute of Electrical and Electronics Engineers should improve the outlook, and NIST has developed educational presentations and white papers to summarize the key issues and potential solutions. In addition, NIST plans to facilitate future standards development, possibly under a new Time Synchronization Working Group, chartered by Semiconductor Equipment Materials International.
-end-
*Ya-Shian Li and Brad Van Eck. 2004. Semiconductor Factory and Equipment Clock Synchronization for e-Manufacturing. International SEMATECH Manufacturing Initiative, NISTIR 7184. A PDF version is available here.

National Institute of Standards and Technology (NIST)

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.