Columbia team shows how stratospheric conditions affect weather

December 08, 2004

Three members of Columbia's Department of Applied Physics and Applied Mathematics have used a simple climate model to demonstrate how the weather systems and storms we experience may be influenced by disturbances in the earth's stratosphere, the upper layer of atmosphere between 10 and 30 miles high. This Earth Institute research was recently highlighted by the American Geophysical Union, following recent publication in the journal Geophysical Research Letters.

"Our research shows that changes to the strength of winds in the stratosphere cause changes to tropospheric weather systems" explained lead author Matthew Wittman. Understanding how the stratosphere affects the troposphere, the lowermost layer of the atmosphere where weather occurs, is important to improving seasonal weather forecasts and predicting the effect of ozone depletion and global warming on our climate. "The stratosphere has a longer 'memory' than the troposphere," adds co-author Andrew Charlton. "If you want to make forecasts on a time scale longer than several days, it is useful to understand the mechanisms linking places with longer memories, such as the stratosphere and the oceans, to the troposphere."

Each winter a westerly jet-called the Polar Night Jet-forms in the stratosphere. Winds in this jet circulate around the pole at speeds of up to 100 miles per hour. The strength of this jet changes as part of normal atmospheric variability, and possibly also in response to climate change. In their new research, the authors show that the presence of stronger westerly jets in the stratosphere causes tropospheric weather systems to track further towards the pole.

Averaging the changes to the paths of weather systems, the research team showed, produces a pattern of changes similar in structure to the Arctic Oscillation, the dominant pattern of climate variability in the Northern Hemisphere that describes how temperatures across the whole hemisphere vary together.

The research is part of the team's ongoing efforts to understand the interaction of the stratosphere and troposphere and improve the representation of this interaction in climate models. The Columbia co-authors--Matthew Wittman, Lorenzo Polvani, Richard Scott and Andrew Charlton--are affiliated with the climate research group at the Earth Institute at Columbia.

The Earth Institute at Columbia University is the world's leading academic center for the integrated study of Earth, its environment and society. The Earth Institute builds upon excellence in the core disciplines--earth sciences, biological sciences, engineering sciences, social sciences and health sciences--and stresses cross-disciplinary approaches to complex problems. Through research, training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world's poor. For more information, visit www.earth.columbia.edu.
-end-


The Earth Institute at Columbia University

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.