The secret love life of plants

December 08, 2005

A large portion of plant seeds is endosperm. It has the important task of nourishing the plant embryo during the early stages of its development. In flowering plants, there is a complicated double-fertilisation mechanism that arises among embryos and endosperm. They develop together into mature seeds. The exact process, and the communication between the two parts of the seeds, has been unclear to scientists. Researchers at the Max Planck Institute for Plant Breeding Research and the University of Cologne have, however, isolated a mutant where there is only one single fertilisation. In a recent online edition of the journal Nature Genetics (November 28, 2005) they explain that this single fertilisation, which creates an embryo, also triggers the development of endosperm, even when the central cell where endosperm develops is not fertilised. The ovules of flowering plants are housed in a carpel. Pollen lands on the flower's stigma and forms a pollen tube. It then uses each one of its two sperm cells to fertilise the egg cell, from which the embryo hatches, and the central cell, where the endosperm grows. This double fertilisation is what is special to all flowering plants.

Scientists in Cologne, working with Arp Schnittger, have found a mutant of the plant Arabidopsis thaliana called cdc2. It has an altered pollen. Because of a failed cell division, the cdc2-plants develop pollen that has only one sperm cell instead of two. The researchers have now been exploring the question if whether, under these conditions, fertilisation is possible at all. It turned out that the mutated pollen can survive and even grow into a female partner. Once it has arrived there, the single sperm cell of the cdc2 pollen merges only with the egg cell and not with the central cell. This shows a hierarchy, never before discovered, in the fertilisation process of Arabidopsis.

The scientists made another astounding observation: although the central cell remained unfertilised, it began to develop endosperm. The researchers deduced that shortly after the egg cell was fertilised, a positive signal was sent out to its environment, which appears to be necessary for normal growth of an endosperm. Because the double fertilisation process can be genetically dissected, the existence of this mutant offers new possibilities to learn about the development of endosperm and the embryo in seeds. In the next few months, the researchers hope above all to find out how exactly the signal functions and what chemical reactions are behind it.

"Explaining the mechanism behind double fertilisation in flowering plants and early seed development is particularly interesting in the context of plant breeding," says Arp Schnittger, "because reproduction without fertilisation would be advantageous for many different kinds of breeding."
-end-
Image caption:
Stained nucleus of germinating pollen in the wild type (normal case) and in the cdc2 mutant of Arabidopsis thaliana. The pollen lands on the stigma and builds a tube (visible here). The growth of the pollen tube is controlled by what is called the vegetative nucleus (in picture, somewhat larger and more diffuse). The pollen tube then transfers, in the normal case, two sperm cells (bright, smaller nuclei) to the female partner for fertilisation. In the mutant, the pollen is created with only one sperm cell. Nonetheless, the pollen is able to germinate (see picture), grow into the female partner, and eventually effect a single, but equally exact, fertilisation.
Image: Max Planck Institute for Plant Breeding Research/Art Schnittger

Related links:

[1] Schnittger research group, University of Cologne
http://www.mpiz-koeln.mpg.de/english/research/independent_research_groups/Schnittger/

Original work:

Moritz K Nowack, Paul E Grini, Marc J Jakoby, Marcel Lafos, Csaba Koncz and Arp Schnittger
A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis
Nature Genetics, online edition, December 2005

Max-Planck-Gesellschaft

Related Flowering Plants Articles from Brightsurf:

When plants attack: parasitic plants use ethylene as a host invasion signal
Researchers from Nara Institute of Science and Technology have found that parasitic plants use the plant hormone ethylene as a signal to invade host plants.

Shifts in flowering phases of plants due to reduced insect density
A research group of the University of Jena and the iDiv has discovered that insects have a decisive influence on the biodiversity and flowering phases of plants.

210 scientists highlight state of plants and fungi in Plants, People, Planet special issue
The Special Issue, 'Protecting and sustainably using the world's plants and fungi', brings together the research - from 210 scientists across 42 countries - behind the 2020 State of the World's Plants and Fungi report, also released today by the Royal Botanic Gardens, Kew.

Dodder uses the flowering signal of its host plant to flower
Researchers from the Chinese Academy of Sciences and the Max Planck Institute for Chemical Ecology have investigated how the parasitic dodder Cuscuta australis controls flower formation.

Research reveals function of genetic pathway for reproductive fitness in flowering plants
A research collaboration has demonstrated the function of a genetic pathway for anther development, with this pathway proven in 2019 work to be present widely in the flowering plants that evolved over 200 million years ago.

Bumblebees speed up flowering
When pollen is in short supply, bumblebees damage plant leaves in a way that accelerates flower production, as an ETH research team headed up by Consuelo De Moraes and Mark Mescher has demonstrated.

The revolt of the plants: The arctic melts when plants stop breathing
A joint research team from POSTECH and the University of Zurich identifies a physiologic mechanism in vegetation as cause for Artic warming.

Bumble bee disease, reproduction shaped by flowering strip plants
Flowering strips -- plants used to augment bee foraging habitats -- can help increase bee reproduction but may also increase pathogen infection rates.

Study reveals important flowering plants for city-dwelling honey bees
Trees, shrubs and woody vines are among the top food sources for honey bees in urban environments, according to an international team of researchers.

Water lily genome expands picture of the early evolution of flowering plants
The newly reported genome sequence of a water lily sheds light on the early evolution of angiosperms, the group of all flowering plants.

Read More: Flowering Plants News and Flowering Plants Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.