Growing catalysts

December 08, 2006

Porous materials are involved in many chemical reactions that affect our daily lives. Despite their wide use, there is little knowledge about them. Scientists from the Netherlands, United Kingdom and the ESRF have just shed new light on how these materials organise themselves when they are created. Their experiments at the ESRF combined three different techniques in real time, with the aim of viewing a full picture of the process. This new information could help improve their synthesis in the future.

"Zeolites" might be an unknown word to many non-scientists, but its meaning is everywhere around us: when we wash our clothes, drive a car or walk in the streets. They are used in many processes, such as the production of petrol, detergents or concrete. They are inorganic porous material with a highly regular structure of channels and pores that allow some molecules to pass through, and cause others to be either excluded, or broken down. In nature, they are made of volcanic rock, but industry has been synthesizing them for many years. In industry they are formed from a gel and only become (catalysts) or porous solids when templates are used to direct the formation of a structure. If organic bases (chemical compounds which can neutralize an acid) are added to the reaction, new structures can be formed, but the way this happens is not well understood. A deeper knowledge of this process would enable better catalysts to be made.

In order to get new insight on this process, the team of researchers from The Netherlands, United Kingdom and the ESRF monitored the synthesis of zeolites with organic bases in real time. They added zinc to the original gel because it promotes the formation of zeolites at low temperatures. They realized that this element influenced the template of the zeolite and the crystallization process . The results suggest that molecular organization of the zeolites occurs before crystallization, therefore, before the formation of zeolite crystals.

The time-resolved experiments at the ESRF took place on a specially developed set up, and combined three different techniques, namely X-ray absorption spectroscopy and small and wide angle diffraction. They complemented these with additional data using Raman spectroscopy. "We could look at each aspect of the crystallization process for the first time ever", explains Andrew Beale, one of the researchers, from Utrecht University (The Netherlands).

The new results may not have an immediate repercussion among industrial zeolite manufacturers, but they provide a new vision on these materials for the academic community. The outcome of this research was published in two papers in the Journal of American Chemical Society and has been recently reported in Nature. "These results are highly relevant to the debate on the mechanism of zeolite formation", asserts Rutger A. Van Santen, a scientist from the Schuit Institute of Catalysis (The Netherlands), in the Nature article.

European Synchrotron Radiation Facility

Related Chemical Reactions Articles from Brightsurf:

Shedding light on how urban grime affects chemical reactions in cities
Many city surfaces are coated with a layer of soot, pollutants, metals, organic compounds and other molecules known as ''urban grime.'' Chemical reactions that occur in this complex milieu can affect air and water quality.

Seeing chemical reactions with music
Audible sound enables chemical coloring and the coexistence of different chemical reactions in a solution.

Nanocatalysts that remotely control chemical reactions inside living cells
POSTECH professor In Su Lee's research team develops a magnetic field-induced heating 'hollow nanoreactors'.

New NMR method enables monitoring of chemical reactions in metal containers
Scientists have developed a new method of observing chemical reactions in metal containers.

Levitating droplets allow scientists to perform 'touchless' chemical reactions
Levitation has long been a staple of magic tricks and movies.

Predicting unpredictable reactions
New research from the University of Pittsburgh's Swanson School of Engineering, in collaboration with the Laboratory of Catalysis and Catalytic Processes (Department of Energy) at Politecnico di Milano in Milan, Italy, advances the field of computational catalysis by paving the way for the simulation of realistic catalysts under reaction conditions.

First-time direct proof of chemical reactions in particulates
Researchers at the Paul Scherrer Institute PSI have developed a new method to analyse particulate matter more precisely than ever before.

Finding the source of chemical reactions
In a collaborative project with MIT and other universities, scientists at Argonne National Laboratory have experimentally detected the fleeting transition state that occurs at the origin of a chemical reaction.

Accelerating chemical reactions without direct contact with a catalyst
Northwestern University researchers demonstrate a chemical reaction produced through an intermediary created by a separate chemical reaction, findings that could impact environmental remediation and fuel production.

Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.

Read More: Chemical Reactions News and Chemical Reactions Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to