Unusually stable glasses may benefit drugs, coatings

December 08, 2006

Just spray and chill. That sums up a new approach to making remarkably stable glassy materials from organic (carbon-containing) molecules that could lead to novel coatings and to improvements in drug delivery. The processing advance is reported in this week's issue of Science* by scientists from the University of Wisconsin-Madison and the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR).

The researchers suggest that their approach might be useful for preparing pharmaceutical compounds in non-crystalline forms that are readily absorbed by the body. Such "amorphous pharmaceuticals" have been the subject of recent research intended to enhance drug delivery and to enable active therapeutic ingredients to reach targets inside the body.

The new technique entails depositing vapors of organic molecules onto a substrate cooled to 50 degrees (Celsius) below the glass transition temperature--the point at which a compound normally begins to solidify en route to becoming glass, a frozen, liquid-like structure with no long-range internal order. Conceived by UW-Madison chemist Mark Ediger and colleagues, the method short-circuits the conventional cooling process to great practical advantage.

The result, the researchers say, is a dramatically altered internal "energy landscape." The glass molecules position themselves more densely in low-energy valleys that dot this landscape. In contrast, the molecules that make up conventional glasses are dispersed more widely and become "frozen" on higher-energy bluffs and mesas.

Conventional glasses are less stable thermodynamically, because the molecules gradually abandon the higher-energy elevations. During processing or over time, a conventional glass is more apt to convert to a low-energy crystalline order, changing the structural nature of the material. This can be a problem for amorphous pharmaceuticals, in particular. If the internal structure changes during storage, for example, properties such as solubility also will change, potentially undermining the effectiveness of the drug.

Studies at the NCNR confirmed that molecules in glasses prepared with the team's vapor-deposition method were very densely packed, yet true glasses--amorphous in arrangement. Neutron probes also were used to study how molecules diffuse during subsequent annealing of the two types of glass samples. After 16 hours of annealing, molecules in the new glass remained fixed in place. The conventional sample, by contrast, began bulk molecular diffusion after less than 30 minutes of annealing.
To read the UW-Madison press release, go to: www.news.wisc.edu

*S.F. Swallen, K.L. Kearns, M.K. Mapes, Y.S. Kim, R. McMahon, M.D. Ediger, T. Wu, L. Yu, and S. Satija. Organic glasses with exceptional thermodynamic and kinetic stability. Science. Dec. 8, 2006.

National Institute of Standards and Technology (NIST)

Related Drug Delivery Articles from Brightsurf:

Modelling microswimmers for drug delivery
An international group of theoretical physicists led by Abdallah Daddi-Moussa-Ider from Düsseldorf, Germany, has modelled the motion of microscopic, motile bodies - either powered micro-machines or living cells - in viscous liquid drops, using the Navier-Stokes equations.

Millimetre-precision drug delivery to the brain
Focused ultrasound waves help ETH researchers to deliver drugs to the brain with pinpoint accuracy, in other words only to where their effect is desired.

New smart drug delivery system may help treatment for neurological disorders
A Rutgers-led team has created a smart drug delivery system that reduces inflammation in damaged nervous tissues and may help treat spinal cord injuries and other neurological disorders.

Novel drug delivery particles use neurotransmitters as a 'passport' into the brain
Drug-carrying lipid nanoparticles were created that incorporate neurotranmitters to help them cross the blood-brain barrier in mice.

Advances in nanoparticles as anticancer drug delivery vector: Need of this century
This review article provides a summary of current advances in the use of nanoparticles (NPs) as anticancer drug-delivery vectors.

Microcapsules for targeted drug delivery to cancer cells
A team of scientists from Peter the Great St. Petersburg Polytechnic University together with their colleagues developed a method of targeted drug delivery to cancer cells.

Improving drug delivery for brain tumor treatment
Despite improvements in drug delivery mechanisms, treating brain tumors has remained challenging.

Nanoparticle orientation offers a way to enhance drug delivery
MIT engineers have shown that they can enhance the performance of drug-delivery nanoparticles by controlling an inherent trait of chemical structures, known as chirality -- the 'handedness' of the structure.

News about drug delivery
Nanocontainer for drugs can have their pitfalls: If they are too heavily loaded, they will only dissolve poorly.

Deflating beach balls and drug delivery
Gwennou Coupier and his colleagues at Grenoble Alps University, Grenoble, France have shown that macroscopic-level models of the properties of microscopic hollow spheres agree very well with theoretical predictions.

Read More: Drug Delivery News and Drug Delivery Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.